

December 18th, 2021 @ justine's web page

LISP with GC in 436 bytes

SectorLISP now supports
garbage collection. This is the first time that a high-level garbage
collected programming language has been optimized to fit inside the
512-byte boot sector of a floppy disk. Since we only needed 436 bytes,
that means LISP has now outdistanced
FORTH and
BASIC to be
the tiniest programming language in the world.

[image: [Binary Footprint Comparison]]

SectorLISP consists of 223 lines of assembly. It provides a LISP system
that's powerful enough to let you write your own LISP interpreter in
just 40 lines of LISP. It's compatible with all PC models dating back to
1981 which have at least 64kb of RAM. This isn't a toy because
SectorLISP can run the proof assistant that was
included in LISP 1.5. We achieved the small file size thanks to 20/20
hindsight and an unbiased approach of maximum austerity. The
goal of this project has been to have fun building a kit that optimizes
for file size at the expense of everything else, which means SectorLISP
has more in common with a game
like Universal
Paperclips than a talking paperclip like
Clippy.

This is a follow-up to a previous announcement made in October
that SectorLISP now fits in
one sector. There's been many changes over the past few months that
made it possible to shave away another hundred bytes from the i8086
assembly implementation. It left plenty of room to add a 40 byte garbage
collector. This blog post will tell the story of how our low-level
assembly listing evolved, using a plain and
simple C / JavaScript / Thompson Shell polyglot.

 Binaries

 [image: [Linux]]

 [image: [Windows]]

 [image: [DOS]]

 [image: [MacOS]]

 [image: [FreeBSD]]

 [image: [OpenBSD]]

 [image: [NetBSD]]

	

 sectorlisp.bin
 see also sectorlisp.S

 436 bytes — BIOS only w/ i8086 architecture

 8cad38486c2b92e8328de589f3aa35dbee1b357ec8bda2383bbb84093cc9a042

 sectorlisp-friendly.bin
 see also sectorlisp.S

 509 bytes — BIOS only w/ i8086 architecture

 2b71dffae9900f3aa280ad6eb3bb2752dffb589a8d9a5463515683d03e7021d8

 lisp.com
 see also lisp.js

 20kb — Linux/Mac/Windows/FreeBSD/OpenBSD/NetBSD/BIOS

 869abd2ebd9a31257b768398ac340967f888911dfa9152583fad79575ca11411

 blinkenlights.com
 -rt sectorlisp.bin # runs emulator

 319kb — Linux/Mac/Windows/FreeBSD/OpenBSD/NetBSD/BIOS

 13434c53be973e1125c0f7821b59f9004083f189cdbcc8feefcc943f8258cce4

	

 sectorlisp.bin.dbg

 7.4kb — ELF debug symbols and DWARF data (optional)

 d4e93d630cc11764b8b608f85419cb9285f8313b70def2c2dcc5952073e29a26

 sectorlisp-friendly.bin.dbg

 7.6kb — ELF debug symbols and DWARF data (optional)

 5708d73232876fac8ca0e7617115560b4cfa31fe09fc2260a1eeed69a1defcb2

 lisp.com.dbg

 252kb — ELF debug symbols and DWARF data (optional)

 b5fb83143fa91fb52bdf1e2dc46302d56f4a246c610669a651eccd0024306c76

 blinkenlights.com.dbg

 4.4mb — ELF debug symbols and DWARF data (optional)

 99448d5d2c7ba17bb6d779031ff3bdb567f8a996e890d68aed15aaa04ae4f2c7

The .bin floppy disk boot sectors can be emulated using
Blinkenlights or QEMU, or you can watch
the video below.

curl --compressed https://justine.lol/sectorlisp2/blinkenlights.com >blinkenlights.com
curl https://justine.lol/sectorlisp2/sectorlisp-friendly.bin >sectorlisp-friendly.bin
chmod +x blinkenlights.com
./blinkenlights.com -rt sectorlisp-friendly.bin # then press 'c'
qemu-system-i386 -nographic -fda sectorlisp-friendly.bin

The .com file is slightly larger but it runs on seven operating systems.
It's the same as the JS simulator below.

curl https://justine.lol/sectorlisp2/lisp.com >lisp.com
chmod +x lisp.com
./lisp.com

 Sources

 [image: [Linux]]
 [image: [MacOS]]
 [image: [FreeBSD]]
 [image: [OpenBSD]]
 [image: [NetBSD]]

See the assembly listing listing section. You can
build the simulator on your UNIX system if cc is installed:

curl https://justine.lol/sectorlisp2/lisp.js >lisp.js
chmod +x lisp.js
./lisp.js

Building from source means you get a better command line interface. The
shell script above will curl a GNU Readline replacement we wrote called
Bestline from this same
domain (justine.lol) to make sure you have the latest copy, because
we've been slowly but steadily recreating support for Emacs' famous
Paredit-style editing features.

Simulation

You can use SectorLISP from the comfort of your browser. The C /
JavaScript source code is intended to roughly model the behavior of
SectorLISP on bare metal. Since maximum austerity leaves a bad
impression for developers getting started, this simulator is from the
friendly
branch which uses an extended 509 byte implementation that'll be a
much better friend for you, since it prints errors on undefined behavior
and lets you DEFINE persistent bindings.

	

(DEFINE FF .
 (LAMBDA (X)
 (COND ((ATOM X) X)
 ((QUOTE T) (FF (CAR X))))))

(FF (QUOTE ((A) B C)))

	

	
 get
 0
 	
 set
 0

	
 code
 0
 	
 heap
 0

	
 atom
 0
 	
 ms
 0

	
 read
 0
 	
 print
 0

Eval
Trace
Load
Share
Reset

 Atom example
 Cons example
 Primitive logic
 Find first atom in tree
 Evaluator (Double LISP)
 Signed zero (javascript only)
 DEFINE eval (friendly syntax)
 DEFINE logic (friendly syntax)
 Reform language (Triple LISP)
 Turing Machine (Parity)
 Arithmetic (Full Adder)
 Calculus (Differentiation)
 Wang's Algorithm

Original Hardware

 Jim Leonard was able to confirm for us that SectorLISP does in fact
 run on the original hardware, or more specifically, the IBM PC model
 5150. That was quite thrilling to learn, since SectorLISP was largely
 written a priori using a emulator on Linux that we created.

 [image: [YouTube Video of SectorLISP running on IBM PC 5150]]

 His video provides more background on what boot sectors are. He talks
 about similar projects that have been created in the past, such as
 Oscar Toledo's pioneering work. Then, towards the end of the video,
 you get to watch SectorLISP actually running on one of the finest
 computers ever sold, which has been preserved in perfect quality.

 For example, you can hear the thunk of the power switch on the IBM PC.
 It's about as pleasing to hear as the thud sound an expensive German
 car like a Mercedes makes when you close the door. But the most
 pleasing of all is the vintage Model F mechanical keyboard, which to
 this day remains quite possibly the greatest and most respected
 mechanical keyboard of all time. No keyboard exists in the world
 that's superior in quality to those sold with the original IBM PC,
 except for the tenkeyless version of the
 Model F with APL legends on the keycaps,
 or better yet, the IBM 3278
 Beam Spring keyboard for which the Model F was intended to be a
 more economical replacement.

Emulation

Here's a demo of SectorLISP v2 booting from BIOS in
Blinkenlights and running the
metacircular evaluator, i.e. LISP written in LISP. If you compare this
video to the one from the
previous blog post
you'll see how the new garbage collector has dramatically changed the
personality of the software, in terms of how it uses physical memory.
The WRITE memory panel in particular dances more, and shows how its
heap allocations behave very similar to a stack. You can also use
SectorLISP v1.o online in a PC browser emulator by visiting
copy.sh/v86/.

If you're looking for something more modern, the multiplatform lisp.com
executable also runs on bare metal. Here's a Blinkenlights demo of it
booting from BIOS in 16-bit real mode. It then bootstraps itself into
32-bit mode so it can load itself off disk into memory. The final stage
of bootstrapping inverts the physical memory,
in a similar manner to the Linux Kernel, which enables it to run in
64-bit long mode. Once it's reached the zenith of computing modernity,
it displays a LISP REPL via the serial port.

Keep in mind that the LISP operating system above that's fast-forwarding
its way through history, is actually just the
JavaScript source code built with
Cosmopolitan Libc.
Although we tuned it in lisp.c for a slight
performance nudge when compiled with GCC.

Memory Model

 NULL

 +0

 +2

 +4

 'N'

 2

 'I'

 4

 0

 'L'

 -2

 +2 is IL

 +4 is L

 +0 is NIL

 -0 is ()

 +2

 -2

 -4

 +4

 -0

 -2 is (L)
 or (cons 'L ())

 -4 is (IL L)
 or (cons 'IL
 (cons 'L ()))

The most important trick to implementing LISP is to redefine
NULL.

function Set(i, x) {
 M[Null + i] = x;
}

function Get(i) {
 return M[Null + i];
}

LISP has two types of memory: atoms and cons cells. We store them in two
adjacent stacks that grow outward from NULL.

 Positive addresses are used to intern strings. Interning is good for
 storing symbols (which LISP calls atoms) since it lets us test string
 equality by comparing unique addresses. First among atoms
 is NIL which the assembly encodes as
 a NUL-terminated string residing at the
 NULL address.

 Negative addresses are used to store Pair<int>
 tuples, which LISP calls cons cells. These are used to chain atoms
 together into data structures such as lists and binary trees. First
 among cons cells is the empty list () which is stored at
 negative NULL and therefore equal to NIL.
 This multifacted nature of NIL serves as evidence of how
 LISP's design lends itself to symmetrical partitioning of memory, even
 if the underlying machine arithmetic doesn't support signed zero.
 Negative memory then grows down as CONS is called, which
 returns tuples indexed by CAR and CDR.

	

function Cons(car, cdr) {
 Set(--cx, cdr);
 Set(--cx, car);
 return cx;
}

	

function Car(x) {
 return Get(x);
}

function Cdr(x) {
 return Get(x + 1);
}

The assembly version does things the same way with the slight difference
that cons cells grow up from INT_MIN rather than growing
down from zero. Doing that made the code smaller, but it also lets us
make the claim that it runs on the stock configuration of the first IBM
PC, which shipped with 64kb of RAM. It's because
rebasing NULL on the boot address 0x7c00 gives
negative memory a legal range of -0x8000
to -0x7c00 since only 0x10000 bytes of linear
memory exist. Working within the constraints of an old computer like
i8086 that required us to confront unfamiliar concepts like negative
memory is what helped the most elegant approach for C and JavaScript to
become clear.

	

function ReadList() {
 var x = Read();
 if (x > 0 && Get(t) == Ord(')')) {
 return -0;
 } else {
 return Cons(x, ReadList(t));
 }
}

	

function Print(x) {
 if (1./x < 0) {
 PrintList(x);
 } else {
 PrintAtom(x);
 }
}

One advantage of JavaScript is that it uses a sign-magnitude encoding
similar to the IBM 704 computer for which LISP was designed. That means
we can tell () apart from NIL in
our Read and Print code, even
though Eval doesn't care about signed zeroes. The divide by
zero hack can test for cons cells including ()
because 1/-0 = -Infinity and -Infinity < 0.
C environments with integral two's complement arithmetic will simply
normalize () to NIL and the floating point
operations can be optimized away automatically
using -ffast-math.

Evaluation

 f = (lambda (X Y) Y)

 (car (cdr f)) = (X Y)

 (car (cdr (cdr f))) = Y

LISP evaluation works by recursively calling Apply to
transform the first element of a list into a lambda. It zips the
arguments with their parameters into the environment variables, and runs
the code contained in the function.

Eval(code=(SECOND ARG1 ARG2),
 vars={SECOND=(LAMBDA (X Y) Y), ARG1=FOO, ARG2=BAR}) →
 Apply(code=((LAMBDA (X Y) Y) FOO BAR),
 vars={SECOND=(LAMBDA (X Y) Y), ARG1=FOO, ARG2=BAR}) →
 Eval(code=Y,
 vars={X=FOO, Y=BAR, SECOND=(LAMBDA (X Y) Y), ARG1=FOO, ARG2=BAR}) →
BAR

John McCarthy discovered an elegant self-defining way to compute the
above steps, more commonly known as the metacircular evaluator. Alan Kay
once described this code as the "Maxwell's equations of software".
Here are those equations as implemented by SectorLISP:

ASSOC

 EVAL

 EVCON

 APPLY

 EVLIS

 PAIRLIS

//¶`
#define var int
#define function
//`

function Evcon(c, a) {
 if (Eval(Car(Car(c)), a)) {
 return Eval(Car(Cdr(Car(c))), a);
 } else {
 return Evcon(Cdr(c), a);
 }
}

function Evlis(m, a) {
 return m ? Cons(Eval(Car(m), a),
 Evlis(Cdr(m), a)) : m;
}

function Assoc(x, y) {
 if (x == Car(Car(y))) return Cdr(Car(y));
 return Assoc(x, Cdr(y));
}

function Pairlis(x, y, a) {
 return x ? Cons(Cons(Car(x), Car(y)),
 Pairlis(Cdr(x), Cdr(y), a)) : a;
}

function Eval(e, a) {
 var A = cx;
 if (!e) return e;
 if (e > 0) return Assoc(e, a);
 if (Car(e) == kQuote) return Car(Cdr(e));
 if (Car(e) == kCond) return Evcon(Cdr(e), a);
 return Gc(A, Apply(Car(e), Evlis(Cdr(e), a), a));
}

function Apply(f, x, a) {
 if (f < 0) return Eval(Car(Cdr(Cdr(f))), Pairlis(Car(Cdr(f)), x, a));
 if (f == kEq) return Car(x) == Car(Cdr(x));
 if (f == kCons) return Cons(Car(x), Car(Cdr(x)));
 if (f == kAtom) return Car(x) >= 0;
 if (f == kCar) return Car(Car(x));
 if (f == kCdr) return Cdr(Car(x));
 return Apply(Assoc(f, a), x, a);
}

The code above is from lisp.js. What makes our
Rosetta Stone possible is that C was designed to use int as
an implicit default type, and compilers maintained backwards
compatibility ever since. Traditional C may as well be Sanskrit since it
can't be a coincidence that the languages with the most gravitas seem to
share this as their common subset. It's unfortunate the C standards
committee intends to remove support for K&R syntax, because it
implements LISP so well. Let's compare the code above to John McCarthy's
original 1950's paper which used M-expression notation:

eval[e; a] = [
 atom[e] → assoc[e; a];
 atom[car[e]] → [
 eq[car[e]; QUOTE] → cadr[e];
 eq[car[e]; ATOM] → atom[eval[cadr[e]; a]];
 eq[car[e]; EQ] → [eval[cadr[e]; a] = eval[caddr[e]; a]];
 eq[car[e]; COND] → evcon[cdr[e]; a];
 eq[car[e]; CAR] → car[eval[cadr[e]; a]];
 eq[car[e]; CDR] → cdr[eval[cadr[e]; a]];
 eq[car[e]; CONS] → cons[eval[cadr[e]; a]; eval[caddr[e]; a]];
 T → eval[cons[assoc[car[e]; a]; evlis[cdr[e]; a]]; a]
];
 eq[caar[e]; LAMBDA] →
 eval[caddar[e]; append[pair[cadar[e]; evlis[cdr[e]; a]; a]]]
]

It's a good thing that C wasn't designed until the 1970's since
otherwise JMC might never have discovered LISP. Or maybe the semicolons,
equals sign, and brackets that behave
like switch, PROGN, and COND
suggest the existence of a lost language that both Ritchie and JMC were
fortunate enough to use. It's unlikely, but it'd explain why he felt so
unhappy working with IBM on FORTRAN since it would be like asking a Rust
developer to fix Visual Basic 6. IBM likely knew he was uniquely
qualified to help them, but they didn't accept any of his proposals,
rejecting his asks for features like recursion as unnecessary. LISP
happened as a result. It was a big opportunity loss for both the IBM PC
and JMC himself, since he could have been Bill Gates if the two had
found a way to work together.

Garbage Collection

SectorLISP uses what we call an ABC garbage collector and it took only
40 bytes of assembly. It works by saving the position of the cons stack
before and after evaluation. Those values are called A and B. It then
decreases the cx cons stack pointer further by recursively copying the
Eval result. The new stack position is called C. The memory
between B and C is then copied up to A. Once that happens, the new cons
stack position becomes A - B + C. The purpose of this operation is to
discard all the cons cells that got created which aren't part of the
result, because we know for certain they can't be accessed anymore
(assuming functions aren't added which mutate cells).

	

function Copy(x, m, k) {
 return x < m ? Cons(Copy(Car(x), m, k),
 Copy(Cdr(x), m, k)) + k : x;
}

function Gc(A, x) {
 var C, B = cx;
 x = Copy(x, A, A - B), C = cx;
 while (C < B) Set(--A, Get(--B));
 return cx = A, x;
}

	

Copy:	cmp	%dx,%di
	jb	1f
	push	(%bx,%di)
	mov	(%di),%di
	call	Copy
	pop	%di
	push	%ax
	call	Copy
	pop	%di
	call	Cons
	sub	%si,%ax
	add	%dx,%ax
	ret
1:	xchg	%di,%ax
	ret

Fast immediate garbage collection with zero memory overhead and perfect
heap defragmentation is as easy as ABC when your language guarantees
data structures are acyclic. The trick is to not copy anything above A,
since that memory space consists of cons cells owned by calling
functions as well as interned atoms, which should be ignored. That way
overlaps aren't possible. Thus a GC cycle can't increase memory usage.

Initialization

In order to bootstrap LISP one must first bootstrap its builtin atoms.
In C you might do that using a for loop which copies chars from a string
to the memory array. However the assembly implementation doesn't need to
do anything.

NIL T Ω, └• QUOTE COND ATOM CAR CDR CONS EQ ╝ Ç♫▼♫•♫↨╗☻ ëßΦ◄ ΦT
ΦA☺ûΦC ░♪Φr δΩë╧ê╨< v☻¬ûΦ_ < v±<)v♣Ç·)wΦê=û├░(λ0ï4Φ↕ ░ ^à÷x≥t♣░∙
Φ♦ ░)δ7Φ4 à÷x▐¼ä└u⌠├<(tPQë²)═E1λ^VëΘë°8=t♀≤ªt◙O1└«u²δΩ≤ñY├1└═▬┤♫
═►<♪u♦░◙δ⌠Æ├àλt▬λ1ï♣Φ¡ _PΦ≡λ_ç∙ë♪ë☺ìM♦ù├Φcλ<)t_ΦóλPΦ≥λδΣ9╫rΩλ1ï=
Φ⌡λ_PΦ≡λ_Φ╤λ)≡☺╨├VΦo ^à└y↔ùï9Wï=àλt╲¡λ1ï=ï4Φ»λùÆΦ¬λÆ_δΘ=) w╒ï<<∟
t+< t&<↨u•àλy♫1└├<$ï0¡tà1°u≥░♦├ë╓ï<ï0»u∙÷ï9<»ï♣├ï9Wï5¡Φ♂ _à└t≥λ5
_Φσλà└t+y╒û¡=♀ ï<t┌=↕ t┌RQPΦ.λûXΦsλZë╬ùΦNλë╫)±≤ñë∙Z├╬╬╬╬╬╬╬╬╬╬╬╬
╬╬╬ SECTORLISP v2 U¬

x86 processors have a feature that lets us literally
redefine NULL to be the address to which our program is
loaded by the BIOS. It's a privilege that's normally reserved only for
operating systems. The trick we use here is to treat the program image
itself as a set of entries in the interned strings table.

One problem that arises is that the BIOS asks the CPU to execute the
ASCII strings at the beginning of the image. By sheer luck we learned
NIL and T could be safely decoded without
side-effects. Had that not been the case, we'd've needed to choose a
different terminator than NUL which would have made the
program file larger.

"N"	dec	%si
"I"	dec	%cx
"L"	dec	%sp
"\0T\0" add	%dl,(%si) # and we know for certain %dl is 0
	ljmp	$0x7c00>>4,$begin

One thing you may be wondering about the above sector, is what's the
point of making it smaller than 512 bytes if you have to pad it to 512
bytes anyway to include the U¬ (AA55h) boot signature? The answer is
that we simply learned more about LISP by doing it. But it's also
because that signature wasn't part of the original PC design. It was
actually added by Microsoft to later models, similar to the more
recently introduced requirements that the Linux Kernel be distributed as
a Windows executable. The IBM PC XT will happily load and run the 436
byte version and it's a nice design.

Overlapping Functions

If high-level programming languages like C are the Ice Hotel and
assembly is the tip of the iceberg, then the hidden dimension of
complexity lurking beneath would be Intel's variable length encoding.
This is where boot sectors get esoteric real fast, since tools can't
easily visualize it. for example, consider the following:

	

/	%ip is 0
	mov	$0xf4,%al
	ret

	

/	%ip is 1
	.byte	0xb0
wut:	hlt # and catch fire
	ret

Similar to how a Chess game may unfold very differently if a piece is
moved to an unintended adjacent square, an x86 program can take on an
entirely different meaning if the instruction pointer becomes off by
one. We were able to use this to our advantage, since that lets us code
functions in such a way that they overlap with one another.

	

/	SectorLISP code.
89 D6 Assoc:	mov	%dx,%si
8B 3C 1:	mov	(%si),%di
8B 30 	mov	(%bx,%si),%si
AF 	scasw
75 F9 	jne	1b
F6 	.byte	0xF6
8B 39 Cadr:	mov	(%bx,%di),%di
3C 	.byte	0x3C
AF Cdr:	scasw
8B 05 Car:	mov	(%di),%ax
C3 	ret

	

89 D6 Assoc:	mov	%dx,%si
8B 3C 1:	mov	(%si),%di
8B 30 	mov	(%bx,%si),%si
AF 	scasw
75 F9 	jne	1b
F6 8B 39 3C AF 	testw	$0xaf,0x3c39(%bp,%di)
8B 05 	mov	(%di),%ax
C3 	ret

8B 39 Cadr:	mov	(%bx,%di),%di
3C AF 	cmp	$0xaf,%al
8B 05 	mov	(%di),%ax
C3 	ret

AF Cdr:	scasw
8B 05 	mov	(%di),%ax
C3 	ret

8B 05 Car:	mov	(%di),%ax
C3 	ret

Note that you can hover over the instruction names above to see a
tooltip explaining what they do. For further details, please see the
Blinkenlights'
i8086 ISA encoding rundown and
Intel's manual.

Performance

It takes about 10 milliseconds on a 4.77mhz IBM PC to run to run a LISP
program wrapped inside John McCarthy's metacircular evaluator. However
an obvious bottleneck exists with the interning algorithm which takes
upwards of 50 milliseconds during the Read operation. Even
on a forty year old computer, fifty milliseconds of latency is quite
sluggish in terms of performance; so let's fix that.

Tinier solutions are usually better ones, but that's not always the
case. The assembly version of our Intern function has an
obvious scalability bottleneck since it saves space by using a
double-nul-terminated list. The simplest way to improve that is to
redefine positive memory to be a hash table containing linked lists of
characters.

	

function Probe(h, p) {
 return (h + p * p) & (Null / 2 - 1);
}

function Hash(h, x) {
 return (((h + x) * 3083 + 3191) >> 4) & (Null / 2 - 1);
}

function Intern(x, y, h, p) {
 if (x == Get(h) && y == Get(h + Null / 2)) return h;
 if (Get(h)) return Intern(x, y, Probe(h, p), p + 1);
 Set(h, x);
 Set(h + Null/2, y);
 return h;
}

function ReadAtom() {
 var x, y;
 ax = y = 0;
 do x = ReadChar();
 while (x <= Ord(' '));
 if (x > Ord(')') && dx > Ord(')')) y = ReadAtom();
 return Intern(x, y, (ax = Hash(x, ax)), 1);
}

	

/	this is slow
Intern:	push	%cx
	mov	%di,%bp
	sub	%cx,%bp
	inc	%bp
	xor	%di,%di
1:	pop	%si
	push	%si
	mov	%bp,%cx
	mov	%di,%ax
	cmp	%bh,(%di)
	je	8f
	rep cmpsb
	je	9f
	xor	%ax,%ax
	dec	%di
2:	scasb
	jne	2b
	jmp	1b
8:	rep movsb
9:	pop	%cx
	ret

The trick here is to find a hash function so that NIL
interns at the NULL position and T interns at
1. That's what lets our Apply code be more elegant. In the
above example, the magic numbers (3083, 3191, 4) were chosen under the
assumption that Null is 040000. If it were a different two-power like
0400000, then the magnums would be (60611, 20485, 0). If you wish to
dive deeper then take a look at
lisp.js, hash.c, and
hash.com.

	

(DEFINE REVERSE .
 (LAMBDA (X Y)
 (COND (X (REVERSE (CDR X)
 (CONS (CAR X) Y)))
 ((QUOTE T) Y))))

	

(REVERSE (QUOTE (A B C D)) ())

One of the known issues with recursive functions is that they have
suboptimal performance without the aid of a tail call optimizer that can
do copy elision. This can have a negative impact on the performance of
the ABC Garbage Collector in list building functions such as the one
above. Blinkenlights is good at spotting scalability problems early.

 [Screencast of Das Blinkenlights visualizing i8086 execution of
 (REVERSE (QUOTE (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z)))]

The canonical workaround to this kind of problem is to use binary trees
instead of lists for big data, since binary trees will reduce the the
call stack depth from being linear to logarithmic.

	

(DEFINE REVERSE .
 (LAMBDA (X)
 (COND ((ATOM X) X)
 ((QUOTE T)
 (CONS (REVERSE (CDR X))
 (REVERSE (CAR X)))))))

	

(REVERSE
 (QUOTE
 (((((A . B) . C) .
 ((D . E) . F)) .
 (((G . H) . I) .
 ((J . K) .
 (L . M)))) .
 ((((N . O) . P) .
 ((Q . R) . S)) .
 (((T . U) . V) .
 ((W . X) .
 (Y . Z)))))))

 [Screencast of Das Blinkenlights visualizing i8086 execution of
 (REVERSE (QUOTE (((((A . B) . C) . ((D . E) . F)) . (((G . H) . I) . ((J . K) . (L . M)))) . ((((N . O) . P) . ((Q . R) . S)) . (((T . U) . V) . ((W . X) . (Y . Z)))))))]

One thing profiling reveals is that LISP spends most of its time inside
Assoc looking up variables, because recursive functions
repeatedly append the same variables to the dynamically-scoped
a list. One low-hanging fruit optimization that's much
easier than implementing a tail-call optimizer is simply tuning
Pairlis to peel away repeated variables.

function Peel(x, a) {
 return a && x == Car(Car(a)) ? Cdr(a) : a;
}

function Pairlis(x, y, a) {
 return x ? Cons(Cons(Car(x), Car(y)),
 Pairlis(Cdr(x), Cdr(y),
 Peel(Car(x), a))) : a;
}

The above optimization allows SectorLISP to outperform Emacs, based on a
benchmark of the "Triple LISP" example available under the Simulator
Load button. See eval4.lisp for the Emacs Lisp
translation. Emacs takes 2,187µs to run that, whereas SectorLISP takes
1580µs. This hack also helped reduce JavaScript latency from ~30ms to
~15ms.

Logic Model

	

 Now summon cunning soul, frauds, and deceits

 With the whole Ulysses; for truth never perishes

 —
 Lucius Annaeus Seneca

 The Trojan Women, 613

 	

 NVNC ADVOCA ASTVS ANIME

 NVNC FRAVDES DOLOS

 NVNC TOTVM VLIXEM

 VERITAS NVMQVAM PERIT

The meaning of truth is underspecified by John McCarthy's original
paper; however, if you read the LISP 1.5 source code, one of the first
things you'll see is this charming comment, which attempts to provide a
definition:

 * PROP LISTS FOR ATOMS NIL & VERITAS-NUMQUAM-PERIT
 * THE ZERO AND THE BINARY TRUTH ATOMS RESPECTIVELY
 *
 77640 ORG COMMON-18
 77640 0 00137 0 07335 NILSXX $PNAME,,-*-1
 77641 0 00000 0 00136 -*-1
 77642 -0 00000 0 00135 MZE -*-1
 77643 -053143777777 OCT 453143777777 NIL
 77644 0 00000 0 00370 NILLOC $ZERO
 *
 77645 0 00132 0 10742 STS $APVAL,,-*-1
 77646 -0 00130 0 00131 MZE -*-1,,-*-2
 77647 0 00000 0 00001 1 IS A CONSTANT ,,1 FOR APPLY
 77650 0 00127 0 07335 $PNAME,,-*-1
 77651 0 00000 0 00126 -*-1
 77652 -0 00000 0 00125 MZE -*-1
 77653 546351642554 BCI 1,*TRUE*

LISP 1.5 is a real trickster compared to modern LISP implementations
because it clandestinely maps T to *TRUE* the
latter of which is the true truth, since it's what builtin predicates
like ATOM and EQ actually return. It figures
they would quote someone who was tormenting Hector's widow since that
design probably tormented many MIT students. LISP 1.5 also jealously
guards its definition of truth, and will throw a constant error if you
try to change it.

A Latin phrase that better describes SectorLISP is NIHIL NVMQVAM PERIT
or in English what is dead may never die. What it means is
that NIL is the only atom SectorLISP won't let you
redefine. You can however define T to have any meaning you
wish, or use it as a variable name, since it's just an atom, and
anything that isn't NIL is considered true by
EVCON. From a programming perspective, this means you'd
need to use something like (QUOTE T) rather
than T in the default clauses of your COND
statements, unless you map T to T.

We chose this model simply because it's what made the file size tinier.
So it actually can be a good idea to have a less permissive design which
prevents T from perishing, because making that a builtin
feature of Eval alone can improve the performance of the
arithmetic code below by ten percent.

Arithmetic

SectorLISP doesn't support numbers; but that's OK, since Arabic numerals
are after all just a sequence of digits, and digits are symbols. Since
SectorLISP does support sequences and symbols, you can use LISP's
preschool math to implement elementary maths like arithmetic. All you
need is a few lines of code. The simplest way we could model unsigned
integers is by using lists and then switching the Arabic right-to-left
ordering to be left-to-right instead (i.e. little endian). We'll then
define
NIL as 0, and anything that isn't
NIL shall be 1. For example, a number such as ten
(or 0b1010 in binary) could then be encoded as (NIL T
NIL T). Now that we've defined how our LISP numbers look, we can
implement recursive functions that operate on them.

	

(DEFINE T . T)
(DEFINE NOT . (LAMBDA (X) (COND (X NIL) (T T))))
(DEFINE OR . (LAMBDA (X Y) (COND (X T) (T Y))))
(DEFINE AND . (LAMBDA (X Y) (COND (X Y) (T NIL))))
(DEFINE XOR . (LAMBDA (X Y) (COND (X (NOT Y)) (T Y))))
(DEFINE HEAD . (LAMBDA (X) (COND (X (CAR X)) (T NIL))))
(DEFINE TAIL . (LAMBDA (X) (COND (X (CDR X)) (T ()))))

(DEFINE + .
 (LAMBDA (A B)
 (ADD A B NIL)))

(DEFINE ADD .
 (LAMBDA (A B C)
 (COND ((OR A B)
 (CONS (XOR (XOR (HEAD A) (HEAD B)) C)
 (ADD (TAIL A) (TAIL B)
 (OR (AND (XOR (HEAD A) (HEAD B)) C)
 (AND (HEAD A) (HEAD B))))))
 (C (CONS C ()))
 (T ()))))

	

(DEFINE EQUAL .
 (LAMBDA (X Y)
 (COND ((ATOM X) (EQ X Y))
 ((ATOM Y) (EQ X Y))
 ((EQUAL (CAR X) (CAR Y))
 (EQUAL (CDR X) (CDR Y)))
 ((QUOTE T) NIL))))

(DEFINE COMMENT 0 + 0 = 0)
(EQUAL (+ ()
 ())
 ())

(DEFINE COMMENT 1 + 1 = 2)
(EQUAL (+ (QUOTE (T))
 (QUOTE (T)))
 (QUOTE (NIL T)))

(DEFINE COMMENT 1 + 2 = 3)
(EQUAL (+ (QUOTE (T))
 (QUOTE (NIL T)))
 (QUOTE (T T)))

(DEFINE COMMENT 2 + 2 = 4)
(EQUAL (+ (QUOTE (NIL T))
 (QUOTE (NIL T)))
 (QUOTE (NIL NIL T)))

(DEFINE COMMENT 10 + 10 = 20)
(EQUAL (+ (QUOTE (NIL T NIL T))
 (QUOTE (NIL T NIL T)))
 (QUOTE (NIL NIL T NIL T)))

 [image: [Full Adder Circuit Schematic]]

The above code iterates over two lists of bits and then applies the full
adder schematic. The nice thing about this code is it supports arbitrary
precision. The Googlepedia solution to this kind of problem is to use
Church numerals; but since Church encoding requires an amount of memory
equal to the numbers themselves, that means we wouldn't be able to have
numbers larger than 8192 on the IBM PC XT. That might be fine for
proving theorems, but how would you like to own a 13-bit computer?
SectorLISP instead unleashes your oldskool 16-bit CPU, enabling it to
perform 64-bit and even 128-bit computations.

Since microoptimizations are very highly prized in arithmetic, one way
we might do that with SectorLISP by using builtins more and taking
advantage of friendly branch features, such as dot cons literals which
let us remove a CAR call. The friendly branch also defines
CAR and CDR the modern way which means we
don't need to define HEAD and TAIL plus it
obfuscates the need for a wrapper. If we combine those techniques with a
builtin tautology atom then this new definition should triple addition
performance with a nice raw quality that self-documents the truth table.

(DEFINE + .
 (LAMBDA (A B C)
 (COND ((COND (A T)
 (T B))
 ((LAMBDA (S)
 (CONS (CAR S)
 (+ (CDR A)
 (CDR B)
 (CDR S))))
 (COND ((CAR A) (COND ((CAR B) (COND (C (QUOTE (T . T)))
 (T (QUOTE (NIL . T)))))
 (T (COND (C (QUOTE (NIL . T)))
 (T (QUOTE (T . NIL)))))))
 (T (COND ((CAR B) (COND (C (QUOTE (NIL . T)))
 (T (QUOTE (T . NIL)))))
 (T (COND (C (QUOTE (T . NIL)))
 (T (QUOTE (NIL . NIL))))))))))
 (C (CONS C ()))
 (T ()))))

Another interesting thing about our arithmetic model is how the loose
typing of truthiness means that S-expressions in general could be seen
as having numeric values, almost like Hebrew numerals. We haven't
imagined a use case for it yet, but let us know if you do, since that
could be very cool.

Calculus

Arithmetic in SectorLISP is very elegant, but unfortunately the numbers
themselves aren't that readable unless you write a radix converter and
reverse the lists. So calculus and algebra are usually better use cases
for LISP since their inputs and outputs are already symbolic sequences
and LISP is a symbolic language. Here's an example of how you can use
SectorLISP to perform symbolic differentiation with support for the most
common mathematical operators.

	

(DEFINE DIFF .
 (LAMBDA (E WRT)
 (COND ((EQ E WRT) 1)
 ((ATOM E) 0)
 ((QUOTE T)
 (DIFF3 (CAR E) (CAR (CDR E))
 (COND ((CDR (CDR E))
 (CAR (CDR (CDR E))))
 ((QUOTE T) NIL)))))))

(DEFINE DIFF3 .
 (LAMBDA (OP X Y)
 (COND ((EQ OP ADD)
 (L3 OP (DIFF X WRT) (DIFF Y WRT)))
 ((EQ OP SUB)
 (L3 OP (DIFF X WRT) (DIFF Y WRT)))
 ((EQ OP MUL)
 (L3 ADD (L3 MUL X (DIFF Y WRT))
 (L3 MUL (DIFF X WRT) Y)))
 ((EQ OP DIV)
 (L3 SUB (L3 DIV (DIFF X WRT) Y)
 (L3 DIV (L3 MUL X (DIFF Y WRT))
 (L3 POW Y (QUOTE 2)))))
 ((EQ OP POW)
 (L3 ADD (L3 MUL (L3 POW X Y)
 (L3 MUL (L2 LOG X)
 (DIFF Y WRT)))
 (L3 MUL Y
 (L3 MUL (L3 POW X
 (L3 SUB Y 1))
 (DIFF X WRT)))))
 ((EQ OP LOG)
 (L3 DIV (DIFF X WRT) X))
 ((EQ OP (QUOTE SIN))
 (L3 MUL (DIFF X WRT)
 (L2 (QUOTE COS) X)))
 ((EQ OP (QUOTE COS))
 (L3 SUB 0 (L3 MUL (DIFF X WRT)
 (L2 (QUOTE SIN) X))))
 ((EQ OP (QUOTE ABS))
 (L3 DIV (L3 MUL X (DIFF X WRT))
 (L2 (QUOTE ABS) X)))
 ((QUOTE T) :HOW))))

	

(DEFINE 0 . 0) (DEFINE 1 . 1)
(DEFINE ADD . ADD) (DEFINE SUB . SUB)
(DEFINE DIV . DIV) (DEFINE POW . POW)
(DEFINE MUL . MUL) (DEFINE LOG . LOG)
(DEFINE L2 . (LAMBDA (X Y) (CONS X (CONS Y ()))))
(DEFINE L3 . (LAMBDA (X Y Z) (CONS X (L2 Y Z))))

(DEFINE EQUAL .
 (LAMBDA (X Y)
 (COND ((ATOM X) (EQ X Y))
 ((ATOM Y) (EQ X Y))
 ((EQUAL (CAR X) (CAR Y))
 (EQUAL (CDR X) (CDR Y)))
 ((QUOTE T) NIL))))

(EQUAL 1 (DIFF (QUOTE X) (QUOTE X)))

(EQUAL (QUOTE (ADD 1 1))
 (DIFF (QUOTE (ADD X X)) (QUOTE X)))

(EQUAL (QUOTE (ADD 1 0))
 (DIFF (QUOTE (ADD X Y)) (QUOTE X)))

(EQUAL (QUOTE (ADD (MUL X 0) (MUL 1 Y)))
 (DIFF (QUOTE (MUL X Y)) (QUOTE X)))

(EQUAL (QUOTE (COS X))
 (DIFF (QUOTE (SIN X)) (QUOTE X)))

(EQUAL (QUOTE
 (ADD (MUL (POW X Y) (MUL (LOG X) 0))
 (MUL Y (MUL (POW X (SUB Y 1)) 1))))
 (DIFF (QUOTE (POW X Y)) (QUOTE X)))

Once again we see LISP's ability to not only compute, but elegantly
explain complex topics too, such as derivatives. LISP obviously knows
nothing about the meaning of the symbols you choose, such
as COS or 0 even though it's able to
manipulate them for you at a high level. For that reason, some of the
expressions it outputs, e.g. (ADD 1 0) can obviously be
simplified. LISP is good at doing that too. As a language, LISP is
popular for implementing computer algebra systems as well as compilers,
since simplified math is usually faster math. For example, GCC actually
uses a dialect of LISP internally for exactly this purpose. So even if
your experience has been focused on writing C and C++ in Vim, you may
already be a LISP user enjoying the benefits, from a certain point of
view.

Universality

The strangest thing that became apparent in our quest to demo a language
that's based on the lambda calculus is that the lambda keyword itself is
superfluous. That's not to imply LISP doesn't have lambdas, but rather
that it's such a powerful concept that it needn't be named.
Apply is able to check for lambdas
using f<0 and then ignores Car(f). We could
have saved 2 bytes by dropping the LAMBDA keyword
(e.g. (((X) X) (QUOTE ARG)) instead of ((LAMBDA (X)
X) (QUOTE ARG))) but we left things alone, since it's an obvious
focal point for language revision schemes. It also makes SectorLISP
itself more flexible in terms of syntax. For example, you could
say ((FUNCTION (X) X) (QUOTE ARG)) or ((LOL (X) X)
(QUOTE ARG)) and it would mean the same thing. In the friendly
branch, you can also say (DEFINE IDENTITY AS (X) X) rather
than (DEFINE IDENTITY . (LAMBDA (X) X)).

The same concept also applies to COND which can be removed
if we treat the LAMBDA body as an
implicit COND. But it'd only save us 11 bytes. That's too
big a tradeoff for the glory of 425 bytes, which can be viewed in the
reform
branch. Reforming the LISP language has never been our goal, because
it should be your goal. For example, here's how LISP could be defined
using only six builtins, which we'll call
LINK, HEAD, TAIL,
EQ, ATOM, and Q.

	

(EVAL
 (QUOTE
 (EVAL (Q (FF X))
 (Q ((FF ((X)
 ((ATOM X) X)
 (FF (HEAD X))))
 (X ((A) B C))))))
 (QUOTE
 ((NULL ((X)
 (EQ X ())))
 (LIST ((X Y)
 (LINK X (LINK Y ()))))
 (ASSOC ((X Y)
 ((NULL Y) (LIST (Q ?) X))
 ((EQ X (HEAD (HEAD Y)))
 (HEAD (TAIL (HEAD Y))))
 (ASSOC X (TAIL Y))))
 (EVLAM ((C A)
 ((NULL (TAIL C))
 (EVAL (HEAD C) A))
 ((EVAL (HEAD (HEAD C)) A)
 (EVLAM (TAIL (HEAD C)) A))
 (EVLAM (TAIL C) A)))
 (ZIP ((X Y A)
 ((NULL X) A)
 (LINK (LIST (HEAD X) (HEAD Y))
 (ZIP (TAIL X) (TAIL Y) A))))
 (EVLIS ((M A)
 ((NULL M) M)
 (LINK (EVAL (HEAD M) A)
 (EVLIS (TAIL M) A))))
 (APPLY ((FN X A)
 ((ATOM FN)
 ((EQ FN (Q HEAD)) (HEAD (HEAD X)))
 ((EQ FN (Q TAIL)) (TAIL (HEAD X)))
 ((EQ FN (Q ATOM)) (ATOM (HEAD X)))
 ((EQ FN (Q LINK))
 (LINK (HEAD X) (HEAD (TAIL X))))
 ((EQ FN (Q EQ))
 (EQ (HEAD X) (HEAD (TAIL X))))
 (APPLY (EVAL FN A) X A))
 (EVLAM (TAIL FN) (ZIP (HEAD FN) X A))))
 (EVAL ((E A)
 ((NULL E) E)
 ((ATOM E) (ASSOC E A))
 ((ATOM (HEAD E))
 ((EQ (HEAD E) (Q Q)) (HEAD (TAIL E)))
 (APPLY (HEAD E) (EVLIS (TAIL E) A) A))
 (APPLY (HEAD E) (EVLIS (TAIL E) A) A))))))

	

(DEFINE ASSOC .
 (LAMBDA (X Y)
 (COND ((EQ X (CAR (CAR Y)))
 (CAR (CDR (CAR Y))))
 ((QUOTE T)
 (ASSOC X (CDR Y))))))

(DEFINE EVLIS .
 (LAMBDA (M A)
 (COND (M (CONS (EVAL (CAR M) A)
 (EVLIS (CDR M) A)))
 ((QUOTE T) ()))))

(DEFINE EVLAM .
 (LAMBDA (C A)
 (COND ((EQ (CDR C) ())
 (EVAL (CAR C) A))
 ((EVAL (CAR (CAR C)) A)
 (EVLAM (CDR (CAR C)) A))
 ((QUOTE T)
 (EVLAM (CDR C) A)))))

(DEFINE ZIP .
 (LAMBDA (X Y A)
 (COND (X (CONS (CONS (CAR X) (CONS (CAR Y) ()))
 (ZIP (CDR X) (CDR Y) A)))
 ((QUOTE T) A))))

(DEFINE APPLY .
 (LAMBDA (FN X A)
 (COND
 ((ATOM FN)
 (COND ((EQ FN (QUOTE HEAD))
 (COND ((CAR X) (CAR (CAR X))) (T ())))
 ((EQ FN (QUOTE TAIL))
 (COND ((CAR X) (CDR (CAR X))) (T ())))
 ((EQ FN (QUOTE ATOM))
 (ATOM (CAR X)))
 ((EQ FN (QUOTE LINK))
 (CONS (CAR X) (CAR (CDR X))))
 ((EQ FN (QUOTE EQ))
 (EQ (CAR X) (CAR (CDR X))))
 ((QUOTE T)
 (APPLY (EVAL FN A) X A))))
 ((QUOTE T)
 (EVLAM (CDR FN) (ZIP (CAR FN) X A))))))

(DEFINE EVAL .
 (LAMBDA (E A)
 (COND ((EQ E ()) ())
 ((ATOM E) (ASSOC E A))
 ((ATOM (CAR E))
 (COND ((EQ (CAR E) (QUOTE Q)) (CAR (CDR E)))
 ((QUOTE T)
 (APPLY (CAR E) (EVLIS (CDR E) A) A))))
 ((QUOTE T)
 (APPLY (CAR E) (EVLIS (CDR E) A) A)))))

The code above is a LISP within a LISP within a LISP: three levels. You
can use this technique to implement missing features like macros. It
also becomes clear that LISP is a king of kings among programming
languages, since if a language can succinctly implement itself, then it
can also let you easily build any other domain-specific language too (so
long as they also use parenthesis notation). One such DSL we could build
is for a Turing machine, which in this case has been configured to
compute popcount(r) % 2 == 1.

(DEFINE SCANNED-SYMBOL . 0)
(DEFINE LEFT-HAND-TAPE . (1 0 1 B B))
(DEFINE RIGHT-HAND-TAPE . (1 1 0 B)) ;; we're computing parity of 0b011
(TURING (QUOTE (0 B (0 0 B R 0) ;; if (state==0 && input==0) print(B), move(Right), state=0
 (0 1 B R 1) ;; if (state==0 && input==1) print(B), move(Right), state=1
 (0 B 0 R 2) ;; if (state==0 && input==B) print(0), move(Right), state=2
 (1 0 B R 1) ;; if (state==1 && input==0) print(B), move(Right), state=1
 (1 1 B R 0) ;; if (state==1 && input==1) print(B), move(Right), state=0
 (1 B 1 R 2))) ;; if (state==1 && input==B) print(1), move(Right), state=2
 (LIST-3 SCANNED-SYMBOL
 LEFT-HAND-TAPE
 RIGHT-HAND-TAPE))

You can view the full Turing machine example by clicking the simulator's
Load button above. For further details on how the DSL is defined, please
see AI Memo No. 8.

Polyglots

While knowledge of the technique existed, no one's published software
before that polyglots C and JavaScript, so it's worth going into further
detail on how that works. Language polyglots are similar in spirit to
how a lady or gentleman might choose a communications style that focuses
on a subset of rhetoric all groups feel comfortable hearing. The code
examples in this blog post operate by that same principle, since they're
designed to run in the most popular programming environments. It's the
same technique that was used for Actually Portable
Executable which lets us build binaries that run on seven operating
systems.

There's nothing extraordinary about having a coding style that focuses
on what different programmers share in common. It's the initial process
of determining what that software consensus is that's difficult, since
it requires one to not only understand of the requirements of modern
systems, but also undergo an archaeological voyage reading tomes of
legacy code like a librarian in order to understand their phylogenesis.
The results end up being very easy:

// plain simple executable code that
// helps c / js communities use lisp
function Apply(f, x, a) {
 if (f < 0) return Eval(Car(Cdr(Cdr(f))), Pairlis(Car(Cdr(f)), x, a));
 if (f == kEq) return Car(x) == Car(Cdr(x));
 if (f == kCons) return Cons(Car(x), Car(Cdr(x)));
 if (f == kAtom) return Car(x) >= 0;
 if (f == kCar) return Car(Car(x));
 if (f == kCdr) return Cdr(Car(x));
 return Apply(Assoc(f, a), x, a);
}

But not every line of code can be made a good citizen of multiple
languages. We need workarounds for code that's platform specific.
Ulysses (the person the LISP 1.5 source code quoted earlier) is most
famous for his Trojan Horse trick that let Greece defeat Troy. His guile
inspired another recent paper called
Trojan Source. The trick
SectorLISP uses which is similar in spirit (but not intent) is the
PARAGRAPH SEPARATOR (u2029) which
ECMA-262
2021 §12.3 defines as a line terminator, whereas ANSI C and nearly
everything else does not.

javascript syntax highlighting//¶`
... C only code goes here ...
//`

It works by sneaking multiline JavaScript strings into C comments, to
serve as a cross-language #ifdef statement. That lets us
ask JavaScript to ignore small portions of code that are only meant for
C compilers. If we wish to ask C to ignore code that's intended only for
JavaScript, then the technique can be used as follows:

c syntax highlighting//¶`
#if 0
//`
... JavaScript only code goes here ...
//¶`
#endif
//`

It should be a requirement for C projects that call themselves portable.
Codebases like Zlib / InfoZIP use a notorious number
of #ifdef statements to bring the benefits of support for
the DEFLATE algorithm to platforms like VAX, QDOS, Amiga, IBM
System/360, and possibly even those IBM Series/1 minicomputers. If we go
to great lengths using ifdefs to maintain rare platforms, then why
shouldn't we use polyglot ifdefs to support the most popular platform
too? There's wisdom in a LISP that's fits on floppy disks if we consider
that a U.S. nuclear weapons agency got hacked immediately after they
stopped using them6. They should
have considered LISP instead since it has all the qualities of the old
technologies while continuing to be ahead of its time, even after all
these years.

Please note the PARAGRAPH SEPARATOR (u2029) is normally invisible so
it's been typeset above as PILCROW SIGN (u00b6). Since creative uses of
technology have a tendency to reveal bugs, it should be noted that,
thanks to the limitless configurability of LISP, you'll always have a
safer space for programming since you can tune your Emacs editor as
follows:

(or standard-display-table
 (setq standard-display-table
 (make-display-table)))
(aset standard-display-table #x2028 [?↵]) ;; LINE SEPARATOR
(aset standard-display-table #x2029 [?¶]) ;; PARAGRAPH SEPARATOR
(aset standard-display-table #x202A [?⟫]) ;; LEFT-TO-RIGHT EMBEDDING
(aset standard-display-table #x202B [?⟪]) ;; RIGHT-TO-LEFT EMBEDDING
(aset standard-display-table #x202D [?❯]) ;; LEFT-TO-RIGHT OVERRIDE
(aset standard-display-table #x202E [?❮]) ;; RIGHT-TO-LEFT OVERRIDE
(aset standard-display-table #x2066 [?⟩]) ;; LEFT-TO-RIGHT ISOLATE
(aset standard-display-table #x2067 [?⟨]) ;; RIGHT-TO-LEFT ISOLATE
(aset standard-display-table #x2068 [?⧽]) ;; FIRST STRONG ISOLATE
(aset standard-display-table #x202C [?⇮]) ;; POP DIRECTIONAL FORMATTING
(aset standard-display-table #x2069 [?⇯]) ;; POP DIRECTIONAL ISOLATE

Alternatives

SectorLISP is non-revisionist because if we'd gone down the path of
changing the definition of LISP, then it'd've taken us to a place where
lists become tape and then you've got an ASCII Turing machine like
Brainfuck, which can be implemented with only
99
bytes. It may be capable of computing everything that's computable,
but can we really call gibberish a programming language?

Hello World in Brainf*#k
++++++++[>++++
 [>++>+++>+++>+<<<<-]
 >+>+>->>+[<]<-]
>>. >---. +++++++..
+++. >>. <-.
<. +++. ------.
--------. >>+. >++.

If that were the goal, we'd be better served by simply not having an
abstraction layer at all. For example, it's possible in 23 bytes to have
a universal language on x86 simply by exposing the x86 machine language.
If you compile the program below and load it into Blinkenlights then you
can copy and paste the gibberish string for Hello World and it'll print
"hello world". If you can chord then you can type the binary into your
IBM PC with the Model F keyboard too.

	

/	twenty three byte loader
_start:	ljmp	$0x600>>4,$_begin
_begin:	push	%cs
	pop	%ds
	push	%cs
	pop	%es
0:	call	1f
1:	push	%di
2:	xor	%ax,%ax
	int	$0x16
	stosb
	cmp	$206,%al
	jne	2b
	ret

	

/	example program with loader
/	put string in blinkenlights
/	j♪^┤♫¼═►<◙u∙├hello world♪◙╬
	push	$13
	pop	%si
	mov	$0x0e,%ah
0:	lodsb
	int	$0x10
	cmp	$10,%al
	jnz	0b
	ret
	.ascii	"hello world\r\n"
	into

Languages like Brainfuck were known in JMC's time, but it was the human
quality of his research that made LISP so attractive. Universal
languages are common enough that one of the biggest challenges in
securing protocols and file formats is demonstrating that they're not
accidentally a Turing machine. For example, the UNICODE stack machine
characters above flirt dangerously close with Turing's thesis. Even
Conway's Game of Life was proven to be Turing
complete. On the other hand, LISP is a tool that people want to use.
It's always commanded respect and some companies have built veritable
empires using it. That's why it's such a great find that, thanks to the
simplicity and generality of its original formulas, we were able to
implement LISP in nearly the same number of bytes as Brainfuck.

 [image: [Curve of tiniest Turing machines based on x states and y symbols]]

It might be possible to create something even smaller than Brainfuck.
Computer science provides some clues as to what the tiniest esoteric
boot sector language might be. For example, Marvin Minsky discovered a
7-state 4-symbol universal Turing machine in 1962. The chart above is
from Turlough Neary's PhD thesis which shows a tradeoff between
minimizing symbols and states. If we could find some way to get the
rules for one of these tiny Turing machines to neatly map onto a bitwise
arithmetic hack, similar to the (B11 | r0) & r1 &
~r2 trick that Browne and
Tavener discovered for Conway's Game of Life, like a NAND gate, then we
might create an esoteric boot sector language so tiny in scale and
austere in its definition that its parsimoniousness would never be
challenged.

Why It Matters

	

 Simplicity is the sign of truth.

 —
 Herman Boerhaave

 	

 SIMPLEX SIGILLVM VERI

Tiny code contests have historically focused on the source code. What
makes that problematic is how it incentivizes obfuscation. On the other
hand, optimizing for binary size usually results in the source code
becoming more elegant. In order to make program files tinier, one must
choose data structures and design patterns that are harmonious with the
way computers work. Doing that requires us to better understand the
nature of the problem.

Is it better to help maintain the largest piece of software in the world
when you can create the tiniest one instead? There's more combinations
in a 512-byte boot sector than there are positions on a Go board. The
fact that people are still publicly developing new boot sector programs
for a forty year old computer should speak for itself. Demoscene is a
relative newcomer compared to Go and Chess, but it could potentially be
a more enjoyable competitive mind sport since Kolmogorov complexity is
AI-hard.

While code golfing is fun, the goal of any technology is to help us
better understand nature and to improve upon the human condition. The
way tinier software conventionally does this is by letting us have more
instances of it at scale. The same is true of nature where the tiniest
creatures are the most predominant. They're called phages and there's
10,000,000,000,000,000,000,000,000,000,000 of these guys on earth. The
tiniest phage in the world that's listed in the European Nucleotide
Archive goes by the name Leuconostoc Phage L5 and it has a complete
genome size of 631 bytes. So by the standards of our game, we could say
that LISP has now outdistanced nature too. This of course isn't meant to
imply that smaller is necessarily better. For example, ring tailed
lemurs have a binary footprint of 537
megs12 similar to Racket's 500mb
install size. They're both quite adorable, but certainly not simple.

> L06183: Leuconostoc Phage L5 complete genome cp437 le-bin acgt
Z6♫τ♫▼≡2É<ÅΣ< 2âÖ⌂δ╧δ♦♫ü◘&☼G~C ≥♥Fî` ÉO²æ⌡f1▬←°ⁿ<7¿√•▼╠♫&μ»↕_░»≡
ä ╗≤↔?☼@v¿ ○☻ r┤ⁿ░≥▼.λ┐¢ⁿ∩&╗↓≡╗╔λo■ⁿ÷∩o╛■Bj♂X»ô┤∙â☺☺`7s╨ƒ•3b♪l§►
→ü♫╓╠‼μ▀X√╛←╝∩♠<┐∩⌂≡≈λc±∩≡£ ‼²∙²•o♥|╧φ/C▀╟♪;╛♥⌂λ╟♀♀═tλî;/┴D4α╬╝3
⌂╚$á┬╠á▒☼ °└,╚å‼A λ├≥τ` ╩╕û├↨F♦○B$34l?└┘‼LÇy♣(Mⁿây┐╧♂↕╝C2NKÇαá╞⌂
╦┴♥?│├Çä☼├Ç£ ån<0⌡╧∙╦■║♀╙Ç|<é╜3☼Ü>♀pé²76+┘▓╧≈▬“∩∩A│3 6 NO║oƒ<n@~
╕┐M)@> 8e☼∙ò£ê≤├♥▒♫╠◙l⌂F╛≥┤λ♦░⌂λ▬╛▲☼↑ ↨♀═‘/≡♠ñ•¶╒λ≈↨╪/Ç√ô♀├ ♂≤∩∟
0N╚ñ ♂αCé╘#┘ú»⌠♫0•♀[9=¢2╬☻♦ï▼δ£ä6 ¼±¡÷n↑♦ìp(ⁿMX≤æ°∩¬á┴╧<+☼↓<ç÷O╦
{ÅƒÄ=•â┬∟¼╨╠╠▀ôⁿ≤╖┴=≡∩▼l♥►5♂t%/█∩o╝4┼↨ç≡•ε·H<∩╦♀ε«╣╠■ëO♥Ä¼¡═•│m♂
ÉN< G≡23â≈⌠├°6∩²┌?│α·α>┘°▲L±@=7░íⁿ0▀╨≤C2>√?▼█≥┴♂♥?ó├?`♀ êyC┴â▬Æ
²├╧╧╧╧ƒ¢║a╦♂a┌@c∩÷A‼╓┐╪╢L←ç╝╪┐π¢▬

John McCarthy may have lost out on the opportunity to be the father of
the personal computing software revolution, but there's still a chance
for his ideas to lead the second. The tools for natural engineering
became cheap and open source in recent years. Many people are scrambling
to be the next Monsanto, but what we actually want is the next Linux,
Apple, and Microsoft. We need a tool that can abstract genetics and
proteins in the smallest way possible, similar to how SectorLISP
currently offers the service of abstracting gritty assembly in the
fewest commands. For example one might edit a tiny symbiotic bacteria
like Candidatus Carsonella Ruddii (40,000 bytes) to be a platform for
running LISP programs that would be delivered by printed phages. In
fact, someone might have even figured it out already. It's been public
knowledge for fifty years people can build recombinant organisms, like
the gap between iPhone and SIGSALY. Crispr can be programmed in XML. If
it can be done with LISP instead then we must use it.

Listing

 Here's the full i8086 assembly listing for SectorLISP v2.

 It's 8 pages and available in
 TXT,
 HTML,
 BIN, or
 ELF.

 You may also view the sources on GitHub as either
 ASM or
 C.

GAS LISTING sectorlisp.S 			page 1

 GNU assembler version 2.34 (x86_64-alpine-linux-musl)
	 using BFD version (GNU Binutils) 2.34.
 options passed	: -aghlms=sectorlisp.lst -g
 input file 	: sectorlisp.S
 output file 	: sectorlisp.o
 target 	: x86_64-alpine-linux-musl
 time stamp 	: 2021-12-11T00:49:38.000-0800

GAS LISTING sectorlisp.S 			page 2

 1 	/*-*- mode:unix-assembly; indent-tabs-mode:t; tab-width:8; coding:utf-8 -*-│
 2 	│vi: set et ft=asm ts=8 tw=8 fenc=utf-8 :vi│
 3 	╞══╡
 4 	│ Copyright 2020 Justine Alexandra Roberts Tunney │
 5 	│ Copyright 2021 Alain Greppin │
 6 	│ Some size optimisations by Peter Ferrie │
 6 	│ │
 7 	│ Permission to use, copy, modify, and/or distribute this software for │
 8 	│ any purpose with or without fee is hereby granted, provided that the │
 9 	│ above copyright notice and this permission notice appear in all copies. │
 10 	│ │
 11 	│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
 12 	│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
 13 	│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
 14 	│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
 15 	│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
 16 	│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
 17 	│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
 18 	│ PERFORMANCE OF THIS SOFTWARE. │
 19 	╚───*/
 21 	
 22 	// LISP meta-circular evaluator in a MBR
 23 	// Compatible with the original hardware
 24 	
 25 		.code16
 26 		.globl	_start
 27 0000 4E494C00 	_start:	.asciz	"NIL"				# dec %si ; dec %cx ; dec %sp
 28 0004 5400 	kT:	.asciz	"T"				# add %dl,(%si) boot A:\ DL=0
 29 0006 EA0000C0 	start:	ljmp	$0x7c00>>4,$begin		# cs = 0x7c00 is boot address
 29 07
 30 000b 00 		.asciz	""
 31 000c 51554F54 	kQuote:	.asciz	"QUOTE"
 31 4500
 32 0012 434F4E44 	kCond:	.asciz	"COND"
 32 00
 33 0017 41544F4D 	kAtom:	.asciz	"ATOM"				# ordering matters
 33 00
 34 001c 43415200 	kCar:	.asciz	"CAR"				# ordering matters
 35 0020 43445200 	kCdr:	.asciz	"CDR"				# ordering matters
 36 0024 434F4E53 	kCons:	.asciz	"CONS"				# ordering matters
 36 00
 37 0029 455100 	kEq:	.asciz	"EQ"				# needs to be last
 38 	
 39 002c BC0080 	begin:	mov	$0x8000,%sp			# uses higher address as stack
 40 							# and set independently of SS!
 41 							# 8088 doesn't stop interrupts
 42 							# after SS is set, and PC BIOS
 43 							# sets SP to a value that will
 44 							# damage our code if int fires
 45 							# between it setting SS and SP
 46 002f 0E 		push	%cs				# that means ss = ds = es = cs
 47 0030 1F 		pop	%ds				# noting ljmp set cs to 0x7c00
 48 0031 0E 		push	%cs				# that's the bios load address
 49 0032 07 		pop	%es				# therefore NULL points to NUL
 50 0033 0E 		push	%cs				# terminated NIL string above!
 51 0034 17 		pop	%ss				# errata exists but don't care
 52 0035 BB0200 		mov	$2,%bx
GAS LISTING sectorlisp.S 			page 3

 53 0038 89E1 	main:	mov	%sp,%cx
 54 003a E81100 		call	GetToken
 55 003d E85400 		call	GetObject
 56 0040 E84101 		call	Eval
 57 0043 96 		xchg	%ax,%si
 58 0044 E84300 		call	PrintObject
 59 0047 B00D 		mov	$'\r',%al
 60 0049 E87200 		call	PutChar
 61 004c EBEA 		jmp	main
 62 	
 63 	GetToken:					# GetToken():al, dl is g_look
 64 004e 89CF 		mov	%cx,%di
 65 0050 88D0 	1:	mov	%dl,%al
 66 0052 3C20 		cmp	$' ',%al
 67 0054 7602 		jbe	2f
 68 0056 AA 		stosb
 69 0057 96 		xchg	%ax,%si
 70 0058 E85F00 	2:	call	GetChar				# exchanges dx and ax
 71 005b 3C20 		cmp	$' ',%al
 72 005d 76F1 		jbe	1b
 73 005f 3C29 		cmp	$')',%al
 74 0061 7605 		jbe	3f
 75 0063 80FA29 		cmp	$')',%dl			# dl = g_look
 76 0066 77E8 		ja	1b
 77 0068 883D 	3:	mov	%bh,(%di)			# bh is zero
 78 006a 96 		xchg	%si,%ax
 79 006b C3 		ret
 80 	
 81 	.PrintList:
 82 006c B028 		mov	$'(',%al
 83 006e FF30 	2:	push	(%bx,%si)
 84 0070 8B34 		mov	(%si),%si
 85 0072 E81200 		call	.PutObject
 86 0075 B020 		mov	$' ',%al
 87 0077 5E 		pop	%si				# restore 1
 88 0078 85F6 		test	%si,%si
 89 007a 78F2 		js	2b				# jump if cons
 90 007c 7405 		jz	4f				# jump if nil
 91 007e B0F9 		mov	$249,%al			# bullet (A∙B)
 92 0080 E80400 		call	.PutObject
 93 0083 B029 	4:	mov	$')',%al
 94 0085 EB37 		jmp	PutChar
 95 	
 96 	.PutObject:					# .PutObject(c:al,x:si)
 97 	.PrintString:					# nul-terminated in si
 98 0087 E83400 		call	PutChar				# preserves si
 99 	PrintObject:					# PrintObject(x:si)
 100 008a 85F6 		test	%si,%si				# set sf=1 if cons
 101 008c 78DE 		js	.PrintList			# jump if not cons
 102 	.PrintAtom:
 103 008e AC 		lodsb
 104 008f 84C0 		test	%al,%al				# test for nul terminator
 105 0091 75F4 		jnz	.PrintString			# -> ret
 106 0093 C3 		ret
 107 	
 108 	GetObject:					# called just after GetToken
 109 0094 3C28 		cmp	$'(',%al
GAS LISTING sectorlisp.S 			page 4

 110 0096 7450 		je	GetList
 111 	#	jmp	Intern
 112 	
 113 0098 51 	Intern:	push	%cx				# Intern(cx,di): ax
 114 0099 89FD 		mov	%di,%bp
 115 009b 29CD 		sub	%cx,%bp
 116 009d 45 		inc	%bp
 117 009e 31FF 		xor	%di,%di
 118 00a0 5E 	1:	pop	%si
 119 00a1 56 		push	%si
 120 00a2 89E9 		mov	%bp,%cx
 121 00a4 89F8 		mov	%di,%ax
 122 00a6 383D 		cmp	%bh,(%di)
 123 00a8 740C 		je	8f
 124 00aa F3A6 		rep cmpsb				# memcmp(di,si,cx)
 125 00ac 740A 		je	9f
 126 00ae 4F 		dec	%di
 127 00af 31C0 		xor	%ax,%ax
 128 00b1 AE 	2:	scasb					# memchr(di,al,cx)
 129 00b2 75FD 		jne	2b
 130 00b4 EBEA 		jmp	1b
 131 00b6 F3A4 	8:	rep movsb				# memcpy(di,si,cx)
 132 00b8 59 	9:	pop	%cx
 133 00b9 C3 		ret
 134 	
 135 00ba 31C0 	GetChar:xor	%ax,%ax				# GetChar→al:dl
 136 00bc CD16 		int	$0x16				# get keystroke
 137 00be B40E 	PutChar:mov	$0x0e,%ah			# prints CP-437
 138 00c0 CD10 		int	$0x10				# vidya service
 139 00c2 3C0D 		cmp	$'\r',%al			# don't clobber
 140 00c4 7504 		jne	1f				# look xchg ret
 141 00c6 B00A 		mov	$'\n',%al
 142 00c8 EBF4 		jmp	PutChar
 143 00ca 92 	1:	xchg	%dx,%ax
 144 00cb C3 		ret
 145 	
 146 	//
 147 	
 148 00cc 85FF 	Evlis:	test	%di,%di				# Evlis(m:di,a:dx):ax
 149 00ce 7416 		jz	1f				# jump if nil
 150 00d0 FF31 		push	(%bx,%di)			# save 1 Cdr(m)
 151 00d2 8B05 		mov	(%di),%ax
 152 00d4 E8AD00 		call	Eval
 153 00d7 5F 		pop	%di				# restore 1
 154 00d8 50 		push	%ax				# save 2
 155 00d9 E8F0FF 		call	Evlis
 156 	#	jmp	xCons
 157 	
 158 00dc 5F 	xCons:	pop	%di				# restore 2
 159 00dd 87F9 	Cons:	xchg	%di,%cx				# Cons(m:di,a:ax):ax
 160 00df 890D 		mov	%cx,(%di)			# must preserve si
 161 00e1 8901 		mov	%ax,(%bx,%di)
 162 00e3 8D4D04 		lea	4(%di),%cx
 163 00e6 97 	1:	xchg	%di,%ax
 164 00e7 C3 		ret
 165 	
 166 00e8 E863FF 	GetList:call	GetToken
GAS LISTING sectorlisp.S 			page 5

 167 00eb 3C29 		cmp	$')',%al
 168 00ed 745F 		je	.retF
 169 00ef E8A2FF 		call	GetObject
 170 00f2 50 		push	%ax				# popped by xCons
 171 00f3 E8F2FF 		call	GetList
 172 00f6 EBE4 		jmp	xCons
 173 	
 174 00f8 39D7 	Gc:	cmp	%dx,%di				# Gc(x:di,A:dx,B:si):ax
 175 00fa 72EA 		jb	1b				# we assume immutable cells
 176 00fc FF31 		push	(%bx,%di)			# mark prevents negative gc
 177 00fe 8B3D 		mov	(%di),%di
 178 0100 E8F5FF 		call	Gc
 179 0103 5F 		pop	%di
 180 0104 50 		push	%ax
 181 0105 E8F0FF 		call	Gc
 182 0108 5F 		pop	%di
 183 0109 E8D1FF 		call	Cons
 184 010c 29F0 		sub	%si,%ax				# ax -= C - B
 185 010e 01D0 		add	%dx,%ax
 186 0110 C3 		ret
 187 	
 188 0111 56 	.dflt1:	push	%si				# save x
 189 0112 E86F00 		call	Eval
 190 0115 5E 		pop	%si				# restore x
 191 	#	jmp	Apply
 192 	
 193 0116 85C0 	Apply:	test	%ax,%ax				# Apply(fn:ax,x:si:a:dx):ax
 194 0118 791D 		jns	.switch				# jump if atom
 195 011a 97 		xchg	%ax,%di				# di = fn
 196 011b 8B39 	.lambda:mov	(%bx,%di),%di			# di = Cdr(fn)
 197 011d 57 		push	%di				# for .EvCadr
 198 011e 8B3D 		mov	(%di),%di			# di = Cadr(fn)
 199 0120 85FF 	Pairlis:test	%di,%di				# Pairlis(x:di,y:si,a:dx):dx
 200 0122 745C 		jz	.EvCadr				# return if x is nil
 201 0124 AD 		lodsw					# ax = Car(y)
 202 0125 FF31 		push	(%bx,%di)			# push Cdr(x)
 203 0127 8B3D 		mov	(%di),%di			# di = Car(x)
 204 0129 8B34 		mov	(%si),%si			# si = Cdr(y)
 205 012b E8AFFF 		call	Cons				# Cons(Car(x),Car(y))
 206 012e 97 		xchg	%ax,%di
 207 012f 92 		xchg	%dx,%ax
 208 0130 E8AAFF 		call	Cons				# Cons(Cons(Car(x),Car(y)),a)
 209 0133 92 		xchg	%ax,%dx				# a = new list
 210 0134 5F 		pop	%di				# grab Cdr(x)
 211 0135 EBE9 		jmp	Pairlis
 212 0137 3D0000 	.switch:cmp	$kEq,%ax			# eq is last builtin atom
 213 013a 77D5 		ja	.dflt1				# ah is zero if not above
 214 013c 8B3C 		mov	(%si),%di			# di = Car(x)
 215 013e 3C00 	.ifCar:	cmp	$kCar,%al
 216 0140 742B 		je	Car
 217 0142 3C00 	.ifCdr:	cmp	$kCdr,%al
 218 0144 7426 		je	Cdr
 219 0146 3C00 	.ifAtom:cmp	$kAtom,%al
 220 0148 7507 		jne	.ifCons
 221 014a 85FF 		test	%di,%di				# test if atom
 222 014c 790E 		jns	.retT
 223 014e 31C0 	.retF:	xor	%ax,%ax				# ax = nil
GAS LISTING sectorlisp.S 			page 6

 224 0150 C3 		ret
 225 0151 3C00 	.ifCons:cmp	$kCons,%al
 226 0153 8B30 		mov	(%bx,%si),%si			# si = Cdr(x)
 227 0155 AD 		lodsw					# si = Cadr(x)
 228 0156 7485 		je	Cons
 229 0158 31F8 	.isEq:	xor	%di,%ax				# we know for certain it's eq
 230 015a 75F2 		jne	.retF
 231 015c B000 	.retT:	mov	$kT,%al
 232 015e C3 		ret
 233 	
 234 015f 89D6 	Assoc:	mov	%dx,%si				# Assoc(x:ax,y:dx):ax
 235 0161 8B3C 	1:	mov	(%si),%di
 236 0163 8B30 		mov	(%bx,%si),%si
 237 0165 AF 		scasw
 238 0166 75F9 		jne	1b
 239 0168 F6 		.byte	0xF6				# testb §i8,i16(%bp,%di) jmp Car
 240 0169 8B39 	Cadr:	mov	(%bx,%di),%di			# contents of decrement register
 241 016b 3C 		.byte	0x3C				# cmp §scasw,%al (nop next byte)
 242 016c AF 	Cdr:	scasw					# increments our data index by 2
 243 016d 8B05 	Car:	mov	(%di),%ax			# contents of address register!!
 244 016f C3 	2:	ret
 245 	
 246 0170 8B39 	1:	mov	(%bx,%di),%di			# di = Cdr(c)
 247 0172 57 	Evcon:	push	%di				# save c
 248 0173 8B35 		mov	(%di),%si			# di = Car(c)
 249 0175 AD 		lodsw					# ax = Caar(c)
 250 0176 E80B00 		call	Eval
 251 0179 5F 		pop	%di				# restore c
 252 017a 85C0 		test	%ax,%ax				# nil test
 253 017c 74F2 		jz	1b
 254 017e FF35 		push	(%di)				# push Car(c)
 255 0180 5F 	.EvCadr:pop	%di
 256 0181 E8E5FF 		call	Cadr				# ax = Cadar(c)
 257 	#	jmp	Eval
 258 	
 259 0184 85C0 	Eval:	test	%ax,%ax				# Eval(e:ax,a:dx):ax
 260 0186 742B 		jz	1f
 261 0188 79D5 		jns	Assoc				# lookup val if atom
 262 018a 96 		xchg	%ax,%si				# di = e
 263 018b AD 		lodsw					# ax = Car(e)
 264 018c 3D0000 		cmp	$kQuote,%ax			# maybe CONS
 265 018f 8B3C 		mov	(%si),%di			# di = Cdr(e)
 266 0191 74DA 		je	Car
 267 0193 3D0000 		cmp	$kCond,%ax
 268 0196 74DA 		je	Evcon				# ABC Garbage Collector
 269 0198 52 		push	%dx				# save a
 270 0199 51 		push	%cx				# save A
 271 019a 50 		push	%ax
 272 019b E82EFF 		call	Evlis
 273 019e 96 		xchg	%ax,%si
 274 019f 58 		pop	%ax
 275 01a0 E873FF 		call	Apply
 276 01a3 5A 		pop	%dx				# restore A
 277 01a4 89CE 		mov	%cx,%si				# si = B
 278 01a6 97 		xchg	%ax,%di
 279 01a7 E84EFF 		call	Gc
 280 01aa 89D7 		mov	%dx,%di				# di = A
GAS LISTING sectorlisp.S 			page 7

 281 01ac 29F1 		sub	%si,%cx				# cx = C - B
 282 01ae F3A4 		rep movsb
 283 01b0 89F9 		mov	%di,%cx				# cx = A + (C - B)
 284 01b2 5A 		pop	%dx				# restore a
 285 01b3 C3 	1:	ret
 286 	
 287 01b4 CECECECE 	.sig:	.fill	512 - (2f - 1f) - (. - _start), 1, 0xce
 287 CECECECE
 287 CECECECE
 287 CECECECE
 287 CECECECE
 288 01ef 20534543 	1:	.ascii	" SECTORLISP v2 "
 288 544F524C
 288 49535020
 288 763220
 289 01fe 55AA 		.word	0xAA55
 290 	2:	.type	.sig,@object
 291 		.type	kQuote,@object
 292 		.type	kCond,@object
 293 		.type	kAtom,@object
 294 		.type	kCar,@object
 295 		.type	kCdr,@object
 296 		.type	kCons,@object
 297 		.type	kEq,@object

Credits

SectorLISP started as an experiment in the
Cosmopolitan repo where
Justine Tunney used sed to get
code built by a Linux x86_64 compiler to run in 16-bit mode. Its
original size was 948 bytes, which was gradually reduced with help
from Ilya Kurdyukov at
BaseALT and Scott Wolchok at
Facebook. Alain Greppin did a
rewrite after having the brilliant insight of using Steve Russel's
coding techniques from the LISP 1.5 manual which finally let us fit
SectorLISP in one sector.
Peter Ferrie at Amazon and
Justine reduced SectorLISP further, by another 110 bytes. The ABC
garbage collector was designed and implemented by Justine. The 99 byte
Brainfuck implementation was written by Peter and Justine. The musical
track is an instrumental recording of Das Model by Kraftwerk from 1978.
Credit for the UNICODE paragraph separator
trick
for C / JS polyglots goes to a code golfer from Estonia
named randomdude999.
You're invited to come hang out with the SectorLISP team. Use the
following link to join our Discord chatroom:
https://discord.gg/FwAVVu7eJ4

Mentions

Marc Feeley and Samuel Yvon recently wrote a paper on
a Small
Scheme VM, Compiler, and REPL which cites SectorLISP. Rather than
targeting the legacy sector size of 512 bytes, they targeted the modern
4096-byte page size. That enabled them to offer a great deal more value
in a comparatively tiny size, such as a bytecode compiler, which helps
illuminates Gosling's original intentions for Java.

Funding

 [image: [United States of Lemuria - two dollar bill - all debts public and primate]]

Funding for this blog post was crowdsourced from Justine Tunney's
GitHub sponsors
and Patreon subscribers. Your
support is what makes projects like SectorLISP possible. Thank you.

See Also

	
 Artificial Intelligence Memo No. 8 by John McCarthy

	
 A Basis for a Mathematical Theory of Computation by John McCarthy

	
 Recursive Functions of Symbolic Expressions and their Computation by Machine by John McCarthy

	
 History of Lisp by John McCarthy

	
 The Roots of Lisp by Paul Graham

	
 The announcement that the U.S. nuclear arsenal no longer relies on
 floppy disks was made in the New York Times on October
 24th, 2019
 (see archive.md/lvkmnThe
 and www.nytimes.com/2019/10/24/us/nuclear-weapons-floppy-disks.html).
 The U.S. National Nuclear Security Administration is believed to have
 been breached by the transitive property because they granted a vendor
 named SolarWinds the ability to remotely manage their systems and
 SolarWinds got hacked, according to Natasha Bertrand and Eric Wolff at
 Politico on December 17th, 2020
 (see archive.md/ZTPOP
 and www.politico.com/news/2020/12/17/nuclear-agency-hacked-officials-inform-congress-447855).
 The first evidence that artifacts distributed by SolarWinds had been
 tampered with dates back to October 2019 according to Tomislav Peričin
 at ЯeversingLabs
 (see archive.md/HbzUC
 and
 blog.reversinglabs.com/blog/sunburst-the-next-level-of-stealth).

	
 The IBM 7090 didn't have the concept of bytes so the 32kB binary
 footprint was tallied based on instructions in
 the LISP 1.5 listing file
 and then rounded up to include possible essential data, which was
 later reconciled with the 27kB code size estimate provided by the LISP
 1.5 manual.
 See reddit.com/r/lisp/comments/qomw8r

	
 Troades by Seneca

 twitter.com/justinetunney

 github.com/jart

 By Justine Alexandra Roberts Tunney

 On December 18th, 2021

 jtunney@gmail.com

[image:]
