
ar
X

iv
:1

91
1.

12
33

8v
2

 [
cs

.O
H

]
 8

 O
ct

 2
02

0

Inflationary Constant Factors

And Why Python is Faster Than C++

Mehrdad Niknami

University of California, Berkeley

Constant-factor differences are frequently ignored when analyzing the complexity of
algorithms and implementations, as they appear to be insignificant in practice. In this
paper, we demonstrate that this assumption can in fact have far more profound impli-
cations on time complexity than is obvious at first glance, and that a poor consideration
of trade-offs can result in polynomially slower algorithms whose roots can be deeply and
fundamentally ingrained into a programming language itself. While the general obser-
vation may not be novel from a theoretical standpoint, it is rarely (if ever) presented
in traditional computer science curricula or other settings, and appears to be far from
common knowledge in practical software engineering. We thus hope bring awareness to
this issue and urge careful consideration of significant trade-offs that can result from
trivial decisions made while programming.

1 Introduction

There are often multiple competing algorithms for solving the same problem, with various trade-
offs between them. In many cases, different methods for solving the same problem appear to have
the same time complexity to within a constant factor. Often times, when the difference does not
appear to be too large, it is then disregarded, and an algorithm is then selected based on other
considerations, such as its space complexity or the simplicity of its implementation. Multi-pass
algorithms in particular are frequently preferred over streaming or single-pass algorithms due to
their simplicity, even in cases where they may be a few times slower.

In this paper, we show how the constant-factor nature of a slowdown may be deceptive, and
demonstrate that it can result in unexpectedly polynomial slowdown of an algorithm. While this is
an insignificant observation from the standpoint of algorithmic analysis, we hope to raise awareness
of the need to carefully scrutinize constant-factor differences that are traditionally disregarded in
both the teaching of theoretical computer science and the course of practical software engineering,
as their transformation into polynomial slowdowns does not appear to be common knowledge, but
can have significant adverse usability—and even security—implications.

2 Comparisons

We illustrate the problem by considering the case of comparison operators. Many data structures
and algorithms, such as binary search trees and mergesort, require a partial or total order to

1

http://arxiv.org/abs/1911.12338v2

be defined on the objects of interest. The objects of interest may be further composed of other
objects, and thus may in turn require the definition of an ordering among those objects themselves.
It frequently becomes expedient, therefore, to define a simple interface for comparisons, and to
expect and implement this interface across all data types of interest.

2.1 Types of Comparisons

Broadly, there are two popular competing interfaces for comparison operators:

• 2-way comparisons (e.g. returning True iff one object is less-than another, or False otherwise)
• 3-way comparisons (returning −1 for less-than, +1 for greater-than, and 0 otherwise)

Different languages and libraries prefer different approaches, and sometimes change their preferences
over time to one or the other. For example, in Python 3 and C++17 one implements 2-way
comparison operators (e.g. __lt__ or <) whereas in Python 2, C#, and C++20 one implements
3-way operators (e.g. CompareTo, cmp, or <=>). Reasons cited for doing so include simplicity (for
the former [1]), and efficiency (for the latter [2]).

Consider, then, how one may implement each of these interfaces in terms of the other. A typical
implementation of lexicographical comparison (such as C++’s std::lexicographical_compare)
may be similar to the following Python code. We are interested in its worst-case time complexity.

def cmp2(a, b):

return lt2(b, a) - lt2(a, b)

Uses 2-way < for primitives

def lt2(a, b):

if not isinstance(a, list):

global c; c += 1

return a < b # built-in

for x, y in zip(a, b):

if lt2(x, y): return True

if lt2(y, x): break

return False

def lt3(a, b):

return cmp3(a, b) < 0

Uses 3-way cmp() for primitives

def cmp3(a, b):

if not isinstance(a, list):

global c; c += 1

return cmp(a, b)

for x, y in zip(a, b):

r = cmp3(x, y)

if r != 0: return r

return 0

2.2 Analysis

At a cursory glance, it may appear as though lt2 and lt3 are approximately equally efficient.
And indeed, the need for any analysis is often not apparent at this stage, and thus one of the two
approaches is selected based on secondary considerations or preferences.

However, a simple example illustrates that the use of 2-way comparisons can result in making two
passes rather than one pass over an equal prefix:

2 passes over common "a" prefix

lt2(["a", "b"], ["a", "c"])

1 pass over common "a" prefix

lt3(["a", "b"], ["a", "c"])

Thus lt2 is a multi-pass algorithm, whereas lt3 is a single-pass algorithm. Often the difference
is negligible for small amounts of data. However, in situations where the amount of data to be

2

processed is large—or where comparison operations are expensive for other reasons—this can result
in a significant performance overhead, both in terms of running time (e.g. data may no longer fit
in cache) and in terms of memory (e.g. data may no longer be streamed). The potential overhead
of making multiple passes has been one of the motivations for 3-way comparisons in C++20 [2].

2.3 Unexpected Implications

Unfortunately, this appears to be the point at which analysis of the trade-offs is halted. When the
performance overhead is noted, it is generally presented as a constant-factor issue, with no hint of
possibly more drastic implications for running time. However, crucially, this fails to capture the
full repercussions of using a multi-pass algorithm. To see why, it is helpful to think adversarially.
How might a malicious attacker exploit the constant-factor difference to make 2-way comparisons
drastically slower than 3-way comparisons? Well, one way to do so would be to exploit a hidden
assumption: that the data structure is shallow (and, often, of constant depth).

To that end, consider what happens when we construct a deep tree.

def test(obj):

r = []

for lt in [lt2, lt3]:

global c; c = 0

t = default_timer()

lt(obj, obj)

t = default_timer() - t

r += [c, t * 1E6]

return tuple(r)

from timeit import default_timer

def tree(h):

if h == 0: return 0

return [tree(h - 1), tree(h - 1)]

for h in range(6):

print("%4d\t%4.0f us | %3d\t%2.0f us"

% test(tree(h)))

Height (h) Nodes (n) lt2 calls lt2 time lt3 calls lt3 time

0 1 1 2µs 1 2µs

1 3 4 3µs 2 2µs

2 7 16 7µs 4 3µs

3 15 64 27 µs 8 7µs

4 31 256 108 µs 16 13 µs

5 63 1024 429 µs 32 26 µs

The worst-case number of comparisons performed for a binary tree of n nodes (n = 2h+1
− 1) is:

• About n2 comparisons for 2-way comparisons
• About n comparisons for 3-way comparisons

Suddenly, the choice between 2-way comparisons and 3-way comparisons is now far less subjective
than it may have first appeared: one becomes a quadratic-time algorithm, while the other stays a
linear-time one.1 Further analysis reveals that, in a more general setting of a tree of n nodes with
branching factor b, the number of 2-way comparisons is about n1+log

2
b.

1Also notice that, if we deduplicate the nodes and turn the tree into a DAG, this becomes a reduction from an

approximately 4n-time algorithm to a 2n-time one.

3

Of particular noteworthiness is the fact that it is extremely easy for an algorithm to degrade into
quadratic-like behavior gradually—i.e., even if the absolute worst-case scenario of completely equal
trees is unexpected in a particular application (although in other applications, it can in fact be quite
common), similar scenarios sharing some equals elements—even for trees of bounded depth—would
incur similar quadratic-like behavior at those cases, dramatically degrading performance. Therefore,
a rarity of the most pathological case does not mean that the larger problem is necessarily unlikely
to occur in practice.

2.4 Python vs. C++ Design and Performance

We can now easily see how the precise choice of comparison primitives can unexpectedly harm
asymptotic performance: this can occur when comparing object graphs of large depth, such as
large trees or DAGs. As an interesting case study, we analyze how the ordering and comparison
models in C++ and Python affect the performance of lexicographical ordering algorithms built into
each language.

2.4.1 Comparisons in C++

The design of the C++ comparisons has been quite simple until C++17: classes have merely had
to define a < operator, from which other operations are logically deduced, resulting in a similar
kind of behavior as in lt2.

2.4.2 Comparisons in Python

The design of Python has been somewhat different, and has evolved over time. Python 2 was
originally designed around 3-way comparison operators, defined via the __cmp__ method [3]. How-
ever, 2-way “rich comparison” methods (__lt__, __eq__) were soon introduced in Python 2.1, to
address shortcomings related to numerical Python [4]. Python 3 later deprecated __cmp__ in favor
of 2-way comparisons [1].

Internally, Python 2 and Python 3 both take a slightly different approach to the implementation
of lexicographical ordering than lt2 does: when implementing an operation such as list.__lt__,
rather than relying solely on a single 3-way or 2-way comparison operator, Python invokes both
2-way inequality and equality operators. Specifically, instead of using ≮ to deduce ≯ and =, it
uses ≮ and = to deduce ≯. The rationale for this appears to have been to allow for more efficient
equality comparisons than ordering comparisons in certain scenarios, such as for short circuiting
cases where the lengths of containers are unequal [5]. Indeed, this has had a somewhat unintuitive
side-effect: compared to lt2, the implementation is faster if __le__ and __eq__ are implemented
directly, but slower if only __cmp__ is available.

It appears, therefore, that the asymptotic benefit in the worst-case scenario may have been a happy
accident resulting from a desire to improve empirical performance in certain classes of typical
cases, although it is difficult to know this for certain. Whether deliberate or not, though, the
gain in performance is quite real, and has resulted in a rather bizarre situation where one can
seriously claim that Python can be thousands of times (even arbitrarily many times) faster than
a traditionally “fast language” like C++—merely due to one of the fundamental decisions made
either intentionally or unintentionally in its core design.

4

A comparison of the performance of lexicographical ordering algorithms in C++ and Python vividly
illustrates this fact.

Python version

from timeit import default_timer

class Tree(list):

pass

def tree(h):

s = Tree()

if h > 0:

s += [tree(h - 1), tree(h - 1)]

return s

def main():

h = 15

s1 = tree(h)

s2 = tree(h)

t = default_timer()

s1 < s2

d = default_timer() - t

print(d) # 0.0018s

main()

// C++ version

#include <time.h>

#include <iostream>

#include <vector>

struct Tree : std::vector<Tree> { };

Tree tree(size_t h)

{

Tree s;

if (h > 0)

s.insert(s.end(), 2, tree(h - 1));

return s;

}

int main()

{

size_t h = 15;

Tree s1 = tree(h);

Tree s2 = tree(h);

clock_t t = clock();

s1 < s2;

double d = clock() - t;

d /= CLOCKS_PER_SEC;

std::cout << d << std::endl; // 4.1s

}

This algorithm takes increasingly longer to execute in C++17 than in Python as h increases.

2.4.3 Contrasting Comparisons

Is the design of Python comparisons therefore strictly superior to that of C++? Not quite. Aside
from the (minor) inconvenience of defining multiple comparison operators, the decision to use
__eq__ when defining ordering relations is based on a hidden constraint that is frequently seman-
tically incorrect : namely, on the tacit assumption that two unordered objects are in fact always
equal. This is frequently not the case (for example, consider case-insensitive string comparisons),
and it can be necessary to impose an ordering on objects based on completely different criteria
than semantic equality (for example, consider integers ordered by their parity). Such a distinction
is one motivation for the inclusion of partial and total orders as first-class citizens in the C++20
standard.

From the above discussion, We can see that there can be significant trade-offs regarding semantic
and algorithmic complexity in the design and implementation of even the most basic and funda-
mental operations in computer science. These considerations need to be carefully accounted for in
order to avoid permanently saddling a language or an implementation with potentially subtle and
adverse performance or usability consequences.

5

3 Hashing

While lexicographical comparison illustrates the problem quite nicely, it is far from the only set-
ting in which constant-factor performance differences may be magnified into polynomial ones. To
illustrate that this is not an isolated problem, we present another example, this time based on
hashing.

3.1 Counting Object Occurrences

Consider the case of counting the occurrences of items in a sequence.

def count(items):

seen = {} # hashtable

for item in items:

seen[item] = seen.get(item, 0) + 1

return seen

Here, item is hashed twice—once to retrieve its value, and once to increment the value associated
with that key. We seek to exploit this fact to incur a polynomial slowdown.

3.2 Analysis

Consider what happens if item is itself a sequence whose hash function uses this function:

class C(object):

def __init__(self, *tup):

self.tup = tup

def __eq__(self, other):

return self.tup == other.tup

def __hash__(self):

global c; c += 1

keys = count(self.tup).keys()

return hash(tuple(keys))

def tree(n):

if n == 0: return 0

return C(tree(n - 1), tree(n - 1))

for h in range(6):

global c; c = 0

tree(h) in {C()}

print(c) # 1, 2, 7, 32, 157, 782, ...

Once again, we observe a similar problem as before: the number of operations performed is ap-
proximately polynomially larger than the size of the data structure.

3.3 Solution

Unlike in the previous comparison example, it is more difficult for our count algorithm to remedy
this problem. The solution in this case is to cache every object’s hash code, so that it is not required
to be re-computed every time. This can be done by either the dictionary itself, by the object itself,
or by a proxy layer in between. This can have its own constant-factor performance implications,
but it avoids such asymptotic slowdown.

6

4 Conclusion

It is now clear that constant-factor performance differences can be far more insidious than they
appear at first sight. With the right inputs (or perhaps one should say, with the wrong inputs),
they can be sometimes result in superlinear running times, when only linear running times were
expected. This can have unintended consequences not only for usability, but also for security: it
can make denial-of-service attacks quite practical.

Ultimately, this is a lesson about hidden assumptions and implications. One reason that such issues
often go unnoticed is that hidden assumptions about the problem domain frequently preclude them
from ever occurring in production. Data structures are often implicitly guaranteed to have small
depth, and short-circuit evaluations can sometimes prevent pathological asymptotic slowdowns
from occurring in practice. Furthermore, where adversarial inputs are involved, attacker-controlled
inputs often result in a linear data structure format, making it difficult if not impossible to construct
a tree- or graph-like object structure in memory.

Nevertheless, these issues are of paramount importance when designing general-purpose libraries,
APIs, or programming language, because implicit regularity assumptions might no longer be real-
istic when there is a desire to leave input data types as unconstrained as possible. Moreover, even
domain-specific applications frequently develop their own utility libraries, and those libraries can
in turn be used across the codebase, under unexpectedly different hidden assumptions that were
never explicitly codified or considered when the algorithms were first written.

We therefore suggest that more attention be paid to the full implications of traditionally insignificant
aspects of code design, as something as insignificant as a constant-factor difference in performance
can serve as a hint of a larger and more fundamental concern that may be at stake.

References

[1] Guido van Rossum. What’s New In Python 3.0. docs.python.org/3.0/whatsnew/3.0.html, 2009.

[2] Herb Sutter. Consistent comparison. wg21.link/p0515r3, 2017.

[3] Guido van Rossum. Python Documentation. docs.python.org/2.0/ref/customization.html, 2001.

[4] Andrew M. Kuchling. Python Documentation. docs.python.org/2/whatsnew/2.1.html, 2001.

[5] Guido van Rossum and David Ascher. PEP 207—Rich Comparisons. python.org/dev/peps/pep-0207,
2001.

[6] ISO. ISO/IEC 14882:2017 Information technology—Programming languages—C++. Fifth edition, De-
cember 2017.

7

https://docs.python.org/3.0/whatsnew/3.0.html#ordering-comparisons
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0515r3.pdf
https://docs.python.org/2.0/ref/customization.html
https://docs.python.org/2/whatsnew/2.1.html#pep-207-rich-comparisons
https://www.python.org/dev/peps/pep-0207/

	1 Introduction
	2 Comparisons
	2.1 Types of Comparisons
	2.2 Analysis
	2.3 Unexpected Implications
	2.4 Python vs. C++ Design and Performance
	2.4.1 Comparisons in C++
	2.4.2 Comparisons in Python
	2.4.3 Contrasting Comparisons

	3 Hashing
	3.1 Counting Object Occurrences
	3.2 Analysis
	3.3 Solution

	4 Conclusion

