Django, as a powerful and popular web framework, comes equipped with an impressive Object-Relational Mapping (ORM) system that simplifies database interactions and abstracts away much of the complexity involved in working with databases.
With its expressive and Pythonic syntax, developers can efficiently query, insert, update, and delete data from their database without writing raw SQL queries. Whether you are a beginner exploring the world of Django ORM or an experienced developer seeking a handy reference, this comprehensive cheatsheet will serve as your go-to guide for mastering the Django ORM.
Django ORM Cheatsheet
Whether you're a beginner exploring Django's ORM for the first time or an experienced developer looking to level up your database skills, this comprehensive cheatsheet is designed to be your ultimate reference guide.
Model Definition
from django.db import models
class MyModel(models.Model):
field_name = models.CharField(max_length=100)
another_field = models.IntegerField()
date_field = models.DateTimeField(auto_now_add=True)
Queryset Basics
from myapp.models import MyModel
# Create objects
obj = MyModel.objects.create(field_name='value', another_field=42)
# Retrieve all objects
all_objects = MyModel.objects.all()
# Retrieve a single object
single_object = MyModel.objects.get(pk=1)
# Filter objects
filtered_objects = MyModel.objects.filter(field_name='value')
# Chaining filters
chained_filters = MyModel.objects.filter(field_name='value', another_field=42)
# Exclude objects
excluded_objects = MyModel.objects.exclude(field_name='value')
# Ordering
ordered_objects = MyModel.objects.order_by('field_name')
# Count objects
count_objects = MyModel.objects.count()
# Check if an object exists
exists = MyModel.objects.filter(field_name='value').exists()
# Delete objects
MyModel.objects.filter(field_name='value').delete()
Creating and Updating Objects
# Create and Save
obj = MyModel(field_name='value', another_field=42)
obj.save()
# Bulk Create (improves performance)
MyModel.objects.bulk_create([
MyModel(field_name='value1', another_field=42),
MyModel(field_name='value2', another_field=43),
])
# Update
MyModel.objects.filter(field_name='old_value').update(field_name='new_value')
Querying with Q Objects (Complex Queries)
from django.db.models import Q
# OR query
q = Q(field_name='value') | Q(another_field=42)
or_query = MyModel.objects.filter(q)
# AND query
q = Q(field_name='value') & Q(another_field=42)
and_query = MyModel.objects.filter(q)
Related Objects
from myapp.models import MyModel, RelatedModel
# One-to-One Relationship
class MyModel(models.Model):
related_model = models.OneToOneField(RelatedModel, on_delete=models.CASCADE)
# One-to-Many Relationship
class MyModel(models.Model):
related_models = models.ForeignKey(RelatedModel, on_delete=models.CASCADE)
# Many-to-Many Relationship
class MyModel(models.Model):
related_models = models.ManyToManyField(RelatedModel)
Related Objects Querying
# Reverse relation
related_objects = RelatedModel.objects.filter(mymodel__field_name='value')
# Prefetch related objects (reduce queries)
my_objects = MyModel.objects.prefetch_related('related_models')
Aggregation and Annotation
from django.db.models import Avg, Sum, Count
# Aggregate functions
average_value = MyModel.objects.aggregate(avg=Avg('another_field'))
total_sum = MyModel.objects.aggregate(sum=Sum('another_field'))
total_count = MyModel.objects.aggregate(count=Count('pk'))
# Annotate (add calculated fields)
annotated_objects = MyModel.objects.annotate(avg=Avg('another_field'))
F-Expressions (Update and Annotate)
from django.db.models import F
# Update fields with F-expression
MyModel.objects.update(another_field=F('another_field') + 10)
# Annotate with F-expression
annotated_objects = MyModel.objects.annotate(sum=F('another_field') + F('field_name'))
Transactions
from django.db import transaction
# Manual transaction
with transaction.atomic():
# Your transactional operations here
Signals
from django.db.models.signals import post_save
from django.dispatch import receiver
# Signal receiver
@receiver(post_save, sender=MyModel)
def my_signal_receiver(sender, instance, **kwargs):
# Signal handling code here
pass
Select Related and Prefetch Related
# Select Related (reduces related object queries)
my_objects = MyModel.objects.select_related('related_model')
# Prefetch Related (reduces related object queries and improves performance)
my_objects = MyModel.objects.prefetch_related('related_models')
Filtering with Lookups
# Case-insensitive exact match
filtered_objects = MyModel.objects.filter(field_name__iexact='value')
# Contains
filtered_objects = MyModel.objects.filter(field_name__contains='value')
# Startswith and Endswith
filtered_objects = MyModel.objects.filter(field_name__startswith='prefix')
filtered_objects = MyModel.objects.filter(field_name__endswith='suffix')
# In
filtered_objects = MyModel.objects.filter(another_field__in=[1, 2, 3])
# Range
filtered_objects = MyModel.objects.filter(another_field__range=(10, 20))
Date and Time Queries
from datetime import date
# Exact Date Match
filtered_objects = MyModel.objects.filter(date_field__date=date(2023, 7, 31))
# Year, Month, Day
filtered_objects = MyModel.objects.filter(date_field__year=2023)
filtered_objects = MyModel.objects.filter(date_field__month=7)
filtered_objects = MyModel.objects.filter(date_field__day=31)
# Greater Than and Less Than
filtered_objects = MyModel.objects.filter(date_field__gt=date(2023, 7, 1))
filtered_objects = MyModel.objects.filter(date_field__lt=date(2023, 8, 1))
Raw SQL Queries
from django.db import connection
# Execute Raw SQL Query
with connection.cursor() as cursor:
cursor.execute("SELECT * FROM myapp_mymodel WHERE field_name=%s", ['value'])
results = cursor.fetchall()
with connection.cursor() as cursor:
cursor.execute('SELECT * FROM myapp_mymodel WHERE field_name=%s', ['value'])
with connections['other_db'].cursor() as cursor:
cursor.execute('SELECT * FROM myapp_mymodel WHERE field_name=%s', ['value'])
results = dictfetchall(cursor)
# Helper function for mapping raw SQL results to dictionaries
def dictfetchall(cursor):
columns = [col[0] for col in cursor.description]
return [dict(zip(columns, row)) for row in cursor.fetchall()]
Working with Aggregates and Grouping
from django.db.models import Count, Sum
# Group by field_name and annotate
grouped_objects = MyModel.objects.values('field_name').annotate(count=Count('pk'))
# Group by field_name and calculate sum
grouped_objects = MyModel.objects.values('field_name').annotate(total_sum=Sum('another_field'))
Handling Null and Empty Values
# Filter for null values
filtered_objects = MyModel.objects.filter(field_name__isnull=True)
# Filter for empty strings (useful for CharField)
filtered_objects = MyModel.objects.filter(field_name='')
# Exclude empty strings
excluded_objects = MyModel.objects.exclude(field_name='')
Chaining Querysets
# Chain multiple filters
filtered_objects = MyModel.objects.filter(field_name='value').filter(another_field=42)
# Chain multiple excludes
excluded_objects = MyModel.objects.exclude(field_name='value').exclude(another_field=42)
Defer and Only
In Django's ORM, the defer()
and only()
methods are used to control which fields of a model are fetched from the database when querying. This can help improve performance by fetching only the necessary data and deferring the loading of less critical or heavier fields until they are actually accessed.
Here are practical examples of how to use defer()
and only()
in Django ORM queries:
Using only()
to fetch only specific fields
# Fetch only the publication years and ratings of books, loading all other fields
books = Book.objects.only('publication_year', 'rating')
for book in books:
print(book.title, book.author) # All fields except publication_year and rating are deferred
print(book.publication_year, book.rating) # These fields are loaded from the database
Using defer()
to defer loading of specific fields
# Fetch only the titles and authors of books, deferring other fields
books = Book.objects.defer('publication_year', 'summary', 'cover_image', 'rating', 'genre')
for book in books:
print(book.title, book.author) # Only these fields are loaded from the database
# Accessing other fields will trigger database queries to load them
print(book.publication_year, book.summary)
Case and When Expressions
from django.db.models import Case, When, Value, IntegerField
# Use Case and When for conditional expressions
updated_objects = MyModel.objects.annotate(
custom_field=Case(
When(field_name='value1', then=Value(1)),
When(field_name='value2', then=Value(2)),
default=Value(0),
output_field=IntegerField(),
)
)
Bulk Update with Values
# Bulk update specific fields with given values
MyModel.objects.filter(field_name='old_value').update(field_name='new_value')
Bulk Delete with Querysets
# Bulk delete with a queryset
MyModel.objects.filter(field_name='value').delete()
Custom Managers
# Define a custom manager for a model
class CustomManager(models.Manager):
def custom_method(self):
return self.filter(field_name='value')
# Use the custom manager in the model
class MyModel(models.Model):
field_name = models.CharField(max_length=100)
custom_manager = CustomManager()
Aggregation Functions
from django.db.models import Sum, Avg, Max, Min, Count
# Get the sum of a specific field
total_sum = MyModel.objects.aggregate(total_sum=Sum('field_name'))
# Get the average value of a specific field
average_value = MyModel.objects.aggregate(average_value=Avg('field_name'))
# Get the maximum value of a specific field
max_value = MyModel.objects.aggregate(max_value=Max('field_name'))
# Get the minimum value of a specific field
min_value = MyModel.objects.aggregate(min_value=Min('field_name'))
# Get the count of objects in the queryset
object_count = MyModel.objects.aggregate(object_count=Count('pk'))
Exists Method
# Check if at least one object exists in the queryset
exists_result = MyModel.objects.filter(field_name='value').exists()
Union, Intersection, and Difference
# Union of two querysets (combines and removes duplicates)
union_result = MyModel.objects.filter(field_name='value') | MyModel.objects.filter(another_field=42)
# Intersection of two querysets
intersection_result = MyModel.objects.filter(field_name='value') & MyModel.objects.filter(another_field=42)
# Difference between two querysets
difference_result = MyModel.objects.filter(field_name='value').difference(MyModel.objects.filter(another_field=42))
Conditional Queries
# Use Q objects for complex conditional queries
from django.db.models import Q
complex_query = Q(field_name='value1') | Q(field_name='value2', another_field=42)
filtered_objects = MyModel.objects.filter(complex_query)
Custom QuerySet Methods
# Create custom methods for QuerySet
class MyModelQuerySet(models.QuerySet):
def custom_method(self):
return self.filter(field_name='value')
# Use the custom QuerySet in the model
class MyModel(models.Model):
field_name = models.CharField(max_length=100)
objects = MyModelQuerySet.as_manager()
Subqueries
from django.db.models import Subquery, OuterRef
# Subquery: Use a queryset as a subquery in another queryset
subquery = MyModel.objects.filter(field_name=OuterRef('related_field'))
main_query = MyModel.objects.filter(pk__in=subquery)
# Correlated Subquery: Use a subquery that references the outer query
correlated_subquery = MyModel.objects.filter(related_field=OuterRef('field_name'))
correlated_main_query = MyModel.objects.filter(pk__in=correlated_subquery)
Subqueries and Outer Refs
from django.db.models import Subquery, OuterRef
# Get products with prices greater than the average price of all products
average_price = Product.objects.aggregate(avg_price=Sum('price'))['avg_price']
products = Product.objects.filter(price__gt=Subquery(Product.objects.filter(pk=OuterRef('pk')).values('price')))
JSONField (PostgreSQL-specific)
from django.db import models
from django.contrib.postgres.fields import JSONField
class MyModel(models.Model):
data = JSONField()
Storing JSON objects
from myapp.models import MyModel
# Create a new record with JSON data
data = {
"name": "John Doe",
"age": 30,
"email": "john@example.com"
}
my_instance = MyModel(data=data)
my_instance.save()
Filter by JSON field
from myapp.models import MyModel
# Get all records where 'age' is 30
result = MyModel.objects.filter(data__age=30)
# Get all records where 'email' contains 'example.com'
result = MyModel.objects.filter(data__email__contains='example.com')
ArrayField (PostgreSQL-specific)
from django.db import models
from django.contrib.postgres.fields import ArrayField
class MyModel(models.Model):
tags = ArrayField(models.CharField(max_length=100))
Filtering by ArrayField
# Get objects where tags contain 'django'
MyModel.objects.filter(tags__contains=['django'])
# Get objects where tags are exactly ['django', 'python']
MyModel.objects.filter(tags=['django', 'python'])
# Get objects where the number of tags is 3
MyModel.objects.filter(tags__len=3)
PostGIS (Spatial Data Operations)
# Create a model with a PointField to store geographic coordinates
from django.contrib.gis.db import models
class Location(models.Model):
name = models.CharField(max_length=100)
coordinates = models.PointField()
# Create a model with a PolygonField to store geographic boundaries
class Area(models.Model):
name = models.CharField(max_length=100)
boundary = models.PolygonField()
# Create a model with a LineStringField to store geographic paths/routes
class Route(models.Model):
name = models.CharField(max_length=100)
path = models.LineStringField()
# Query to find locations within a certain distance of a given point
from django.contrib.gis.measure import D
from myapp.models import Location
nearby_locations = Location.objects.filter(coordinates__distance_lte=(point, D(m=1000)))
# Perform a spatial union on all Area objects
from django.contrib.gis.db.models import Union
from myapp.models import Area
unioned_area = Area.objects.aggregate(union=Union('boundary'))['union']
# Get a buffer of 100 meters around a location
from django.contrib.gis.geos import Point
from myapp.models import Location
location = Location.objects.get(pk=1)
buffered_location = location.coordinates.buffer(100)
# Get the intersection of two areas
from django.contrib.gis.geos import Polygon
from myapp.models import Area
area1 = Area.objects.get(pk=1)
area2 = Area.objects.get(pk=2)
intersection = area1.boundary.intersection(area2.boundary)
# Enable spatial indexing for faster querying
from django.contrib.gis.db import models
class Location(models.Model):
name = models.CharField(max_length=100)
coordinates = models.PointField(spatial_index=True)
With this Django ORM Cheatsheet at your disposal, you now have a powerful tool to assist you in every step of your database journey. Whether you're working on a small project or a large-scale application, understanding and mastering Django's ORM will undoubtedly enhance your productivity and allow you to build robust and efficient database solutions.
As you continue to explore the world of Django development, don't forget to leverage the ORM's capabilities and always refer back to this cheatsheet as a quick reference guide. Embrace the versatility of Django ORM and discover the endless possibilities of database operations in your Django projects. Happy coding!