

Dear coder,

Thanks foryour interest inLearnPythonwith Jupyter! I hope itwill helpyou learncomputational think-

ing and coding in Python!

ThewritingofLearnPythonwith Jupyter is awork inprogress. I releaseanewchapterevery4-6weeks,

as I write the book aroundworking hours. That is why it is taking a bit of time.

Learn Python with Jupyter is open and free and it will remain open and free. Upon completion of the

book, I might publish a printed copy. That would have a (low) cost to cover printing and distribution.

Youcanfindsome informationabout theconstructionofLearnPythonwith Jupyter in this JupyterBlog

post: https://blog.jupyter.org/introducing-learn-python-with-jupyter-112
14f152159. I will write more extensively about linguistic, pedagogical, and psychological aspects
behind Learn Python with Jupyter in a future post.

If you have any comments or questions, please email me at serena.bonaretti.research@gmail.com,

and I will be happy to reply.

Thank you for learning withme,

Serena

https://blog.jupyter.org/introducing-learn-python-with-jupyter-11214f152159
https://blog.jupyter.org/introducing-learn-python-with-jupyter-11214f152159

Learn Python with Jupyter

Serena Bonaretti

www.learnpythonwithjupyter.com

www.learnpythonwithjupyter.com

For the free ebook:

Text license: CC BY-NC-SA. Code license: GNU-GPL v3

For the future printed copy:

Copyright ©202x by Serena Bonaretti. All rights reserved.

No part of this bookmay be reproduced, stored in a retrieval system, or transmitted in any form or

by anymeans, electronic, mechanical, photocopying, or otherwise without the prior written

permission of the author.

While the author has used good faith efforts to ensure that the information and instructions

contained in this work are accurate, the author disclaims all responsibility for errors or omissions,

including without limitation responsibility for damages resulting from the use or reliance of this

work. Use of the information and instructions contained in this work is at your own risk. If any code

samples or other technology this work contains or describes is subject to open source licenses or

the intellectual property rights of others, it is your responsibility to ensure that your use thereof

complies with such licenses and/or rights.

Cover design by Federica Dias (www.behance.net/federicadias)

Editing and proofreading by John Batson

www.learnpythonwithjupyter.com

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.gnu.org/licenses/gpl-3.0.en.html
www.learnpythonwithjupyter.com

Eccoci nuovamente insieme per imparare a leggere e a scrivere.

Io direi, però, di più: per imparare a conosceremeglio il mondo e noi stessi.

Here we are again together to learn how to read and write.
Actually, I would go further: to learn to better understand the world and ourselves.

—AlbertoManzi, Non èmai troppo tardi, It’s never too late

Simple is better than complex.

—Tim Peters, The Zen of Python

Content
About this book

p. ix

Introduction

What we need to learn when learning coding

p. xiii

Getting ready

The Jupyter/Python environment

p. 3

Downloading the bookmaterial

p. 8

Part 1: Creating the basics

Chapter Syntax Computational thinking In more depth

1. Text, questions, and art

p. 11
■ Strings

■ Built-in functions

input() and print()

■ Getting information from a

user

■ Printing to the screen

Our fingers have memory
p. 16

2. Events and favorites

p. 18
■ Assignment symbol

■ Concatenation symbol

■ Creating variables

■ Assigning values to

variables

■ Concatenating strings

Dealing with NameError and
SyntaxError
p. 21

Part 2: Introduction to lists and if/else

Chapter Syntax Computational thinking In more depth

3. In a bookstore

p. 25
■ Lists

■ if/else construct
■ Membership operator in
■ Indentation

■ List as a collection

datatype

■ Executing command based

on binary conditions

Let’s give variables meaningful
names!
p. 28

4. Grocery shopping

p. 30
■ List methods

.append() and

.remove()

■ Methods as functions for a

specific datatype

■ Adding and removing

elements to/from a list

based on conditions

Why do we print so much?
p. 34

5. Customizing the burger

menu

p. 36

■ List methods .index(),
.pop(), and .insert()

■ Associating a list element

to an index

■ Finding an element index

■ Adding and removing

elements to/from a list

based on index

We code in English!
p. 39

6. Traveling around the world

p. 41
■ Three-s rule
■ Plus one rule andminus one

rule

■ Slicing to extract elements

from a list

■ Slicing using positive and

negative indices, and in

direct and reverse order

■ Omitting indices

Why the plus one rule?
p. 47

7. Senses, planets, and a house

p. 50
■ Keyword del ■ Replacing, adding, and

removing elements using

list slicing

■ List concatenation

■ Deleting a variable vs. its

content

■ Transitioning from list

methods to slicing

What is the kernel?
p. 56

v

Part 3. Introduction to the for loop

Chapter Syntax Computational thinking In more depth

8. My friends’ favorite dishes

p. 61
■ for loop
■ Built-in functions

range() and str()

■ For loop to repeat

commands

■ For loop to automatically

slice a list

Dealing with IndexError and In-
dentationError
p. 66

9. At the zoo

p. 69
■ Comparison operator ==
■ Built-in function len()
■ # for commands
■ Abbreviating indexwith

i

■ Binary condition in

command repetition

■ Code commenting

Dealing with TypeError
p. 73

10. Where aremy gloves?

p. 76
■ Comparison operators !=,

>, >=, <, <=
■ Searching an element in a

list based on element

length or position, by

combining for loop and

if/else construct

■ Using variables in place of

hard-coded values

Let’s use keyboard shortcuts!
p. 82

11. Cleaning themailing list

p. 85
■ Stringmethods

.lower(), .upper(),

.title(),

.capitalize()

■ Changing list elements in a

for loopwith reassignment

In what list am I changing the el-
ement?
p. 88

12. What amess at the

bookstore!

p. 91

■ Special character "\n" ■ Creating lists in a for loop

■ String slicing

■ Multiple consecutive

slicing

Append or concatenate. Don’t
assign!
p. 96

Part 4. Numbers and algorithms

Chapter Syntax Computational thinking In more depth

13. Implementing a calculator

p. 101
■ Arithmetic operators

■ Built-in functions int(),
float(), type()

■ Keyword elif

■ Number variables as

strings, integers, or floats

■ Testingmultiple variable

values using elif
■ Combining code in a code

unit

Solving arithmetic expressions
p. 108

14. Playing with numbers

p. 110
(no new syntax) ■ Changing numbers based

on conditions

■ Separating numbers based

on conditions

■ Finding themaximum in a

list of numbers

■ Determining number

visibility usingmodulus

Don’t name variables with re-
served words!
p. 113

15. Fortune cookies

p. 116
■ Keyword import
■ randommodule functions

.randing(a,b) and

.choice(list)

■ Module as a unit

containing specific

functions

■ Importing amodule

■ Randomness in coding

What if I don’t use the index in a
for loop?
p. 119

16. Rock paper scissors

p. 121
(no new syntax) ■ Testing, debugging, paral-

lelism, divide and conquer,

algorithm

Why do we say Debugging,
Divide and conquer, and Algo-
rithms?
p. 127

vi

Part 5. The while loop and conditions

Chapter Syntax Computational thinking In more depth

17. Do youwantmore candies?

p. 131
■ Keyword while ■ While loop to ask for

unknown number of inputs

■ Counter

■ Initializing and changing

for the variable in the

condition

Writing code is like writing an
email!
p. 135

18. Animals, unique numbers,

and sum

p. 137

(no new syntax) ■ Identifying various kinds of

conditions

■ Problem solving using

divide and conquer

Don’t confuse the while loop
with if/else!
p. 147

19. And, or, not, not in

p. 150
■ The logical operators and,

or, and not
■ Themembership operator

not in

■ Merging conditions

■ Reversing conditions

What is GitHub?
p. 155

20. Behind the scenes of

comparisons and conditions

p. 157

■ Booleans ■ Booleans as outcomes of

single or several conditions

■ Truth tables

■ Booleans as flags in while

loops

What is the difference between
GeeksforGeeks and Stack Over-
flow?
p. 162

Part 6. Recap of lists and for loops

Chapter Syntax Computational thinking In more depth

21. Overview of lists

p. 167
■ List methods: .clear(),

.copy(), .count(),

.extend(),

.reverse(), .sort()

■ Arithmetic operations on

list elements

■ “Arithmetic” operations

between lists

■ List assignment

■ Adding and removing list

elements

■ List sorting and searching

Whynot use a for loop to remove
list elements?
p. 176

22. More about the for loop

p. 180
■ Built in functions

list() and
enumerate()

■ For loop as a repetition of

commands

■ For loop through indices,

elements, and indices and

elements

■ List comprehension

■ Tuples

■ Nested for loop

Basics of Markdown
p. 189

23. Lists of lists

p. 192
■ (no new syntax) ■ Lists of lists

■ Slicing lists of lists

■ For loop to browse lists of

lists

■ Flattening lists of lists

Lists of lists and images
p. 196

vii

Part 7. Dictionaries and overview of strings

Chapter Syntax Computational thinking In more depth

24. Inventory at the English

bookstore

p. 201

■ Dictionaries

■ Dictionarymethods:

.items(), .keys(),

.values(), .update(),

.pop()

■ Dictionary items, keys, and

values

■ Slicing dictionary values

■ Modifing dictionary values

■ Adding and removing

dictionary items

Lists of dictionaries
p. 205

25. Trip to Switzerland

p. 210
■ Dictionarymethod

.get()
■ List method .format()

■ Initializing an empty

dictionary

■ Four ways tomodify a

dictionary value that is a

list

■ For loop to browse

dictionaries

■ Alternative syntax and

formatting for print()

Dealing with KeyError
p. 214

26. Counting, compressing,

and sorting

p. 217

■ Dictionarymethod

.get(key, initial
value)

■ Built-in function

sorted()

■ Counting elements

■ Compressing information

■ Sorting dictionaries

according to keys or values

Remaining dictionary methods
p. 222

viii

About this book

Whatwill I learn in this book? In this book, youwill learn to code in Python using Jupyter Notebook.

Even more importantly, you will develop computational thinking, which is the way we think when

coding.

What makes this book different? The topic progression in this book is designed according to com-

putational thinking development while focusing on syntax and strategies, rather than listing discon-

nected language characteristics with isolated examples.

Is this book forme? If you have never coded before, if you are following online courses or videos but

feel you can’t quite grasp them, or if you need to better structure your Python and coding knowledge,

this book is for you. Also, if you are training to become a scientist but are not very strong in coding, if

you are transitioning to the Python/Jupyter environment from another programming language, or if

you are a teacher looking for material, this book can be for you.

How is this book structured? The book is divided in 11 parts. The first part introduces the computa-

tional environment—that is, the Jupyter/Python environment. The following ten parts cover compu-

tational thinking andPython syntax. Eachpart contains two tofive chapters, for a total of thirty-eight

chapters.

How are chapters structured? Each chapter starts with one or more coding examples embedded in

narrative and enrichedwith detailed explanations. In addition, each contains several theoretical and

coding exercises. And they all finishwith a recap to summarize the chapter’s main concepts, and a “in

more depth” section, with coding strategies or curiosities.

Why is code embedded in narratives? Stories provide context and allow long-term memorization.

They are extensively used in learning foreign languages. And, in many respects, a programming lan-

guage is a foreign language.

Why is there code pronunciation?Whenwe code, we pronounce or mumble code within ourselves,

and occasionally aloud with a colleague. Although coding has a strong vocal component, there is no

defined standard for code pronunciation. The pronunciation proposed in this book is the optimized

result of hours of one-on-one interaction with students of variousmother tongues.

What kinds of exercises are in the book? In this book, you will find both theory exercises and cod-

ing exercises. Theory exercises are meant to strengthen code comprehension and syntax precision.

Coding exercises aremeant tomake you practice and thus learn by doing.

What is on the website? On www.learnpythonwithjupyter.com, you can find Jupyter Note-
books associatedwith each chapter, so you can test and experiment while learning. You can also find

a community, with solutions to both theory and coding exercises. You can ask questions and propose

alternative solutions, to deepen your knowledge.

Howdo I use this book? Start with the first part,Getting ready, to install and learn the computational

environment. Then, proceedwith the chapters. For each chapter, download the corresponding note-

book at www.learnpythonwithjupyter.com. Make sure you understand the syntax, play with

ix

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

the code, and do the theoretical exercises. Read the recap and the “in more depth” sections, which

will give you useful hints. Finally, do the coding exercises and compare your solutions with the ones

you find in the community. Obviously, looking at a solution before completing an exercise weakens

your chance of learning. If you do not understand questions or solutions, ask in the community. Take

your time to solve each exercise. Missing the understanding of one chapter might compromise your

understanding of the chapters that follow it.

How is the languageused in this book? The language is colloquial and simple—but precise. There are

clear definitions and careful explanations. I directly talk to you, but I usewewhen explaining syntax.

We are in this together! Also, I use the first person when I want to share some hints I learned along

the way.

x

INTRODUCTION
In thispart,wewill briefly talkaboutcodingenvironments, languagesyntax, andcomputational think-

ing. If you are eager to start coding, just skip it and come back later!

What do we need to learn when learning coding?

Coding is a lot about telling a computer what to do. We, human beings, need towrite commands that

computers understand, and to do so, we need to learn to think differently. We have to start from

scratch andmaster a newway of communicating, made of concise and logical instructions. Practically

speaking, we have to learn at least three things: a coding environment, language syntax, and compu-

tational thinking. Let’s see what these are!

A coding environment is a program where we can write and execute code. There are several envi-

ronments to code in Python. In this book, we will use the Jupyter/Python environment, which since

its release in 2015has becomeused increasingly both in industry and academia (Figure 1.1). It allows

integrating code with narrative, and it is ideal for creating reports, draft code, and learning to code.

Other very common coding environments are the integrated development environments (IDEs). For

Python, popular IDEs are PyCharm, Visual Studio, and Spyder (Figure 1.2). IDEs typically embed var-

ious components, such as a script editor, a variable environment panel, and a console wherein code

is tested and executed. In Chapter 32, you will get familiar with one of them, Spyder, which is com-

monly used for scientific coding. And finally, the most basic environment is the Python IDLE, which

is included in the Python installation. It consists of a shell—which looks very similar to a terminal—

where one can type and execute commands (Figure 1.3).

1 2 3

Figure 1. Three IDEs to code in Python: (1) the Jupyter environment, (2) Spyder, and (3) the Python IDLE.

A language syntax is a set of rules defining how to write commands. You are already very famil-

iar with at least one syntax, which is your native language syntax. In your mother tongue, you know

words, punctuation, and how to arrange these elements in sentences to create paragraphs and entire

texts. In coding, the pattern is similar. We have to know data types and operators, as well as how

to arrange them in if/else constructs and loops to create functions and classes. In Table 1, you can
see a schematic summary of elements and syntax you will learn in this book. Don’t worry if you do

not understandmost of it—everything will becomemore andmore clear as we progress through the

book.

xiii

Introduction

Data types

(words)

Operators

(punctuations)

Constructs and

loops

(sentences)

Unit of code

(paragraphs)

Software

(texts)

string, list,

integer, float,

Boolean, tuple,

dictionary, set

assignment,

membership,

arithmetic,

comparison,

logical

if/else construct,

for loop,

while loop

functions classes (object-

oriented pro-

gramming)

Table 1. Components of a programming language, from themost basic (left) to themost complex (right). In the

column titles, the words in between parentheses show the parallelismwith natural language syntax.

Finally, computational thinking is the way we think when coding. Every time we approach a new

subject, we need to learn how to think in that subject and develop specific skills. Some of the abilities

youwill develop in this book are:

• Creating algorithms, which means conceiving and implementing a series of sequential instructions

to solve a problem

• Divide and conquer, which consists of decomposing problems in sub-problems, and then combining

the sub-problem solutions to obtain themain problem solution

• Pattern recognition, whichmeans recognizing in anewproblemfeaturesof apreviously solvedprob-

lem so that you can apply a similar solution

• Solution generalization, which consists of generalizing solutions from specific cases to broader situ-

ations

As is the case for any subject, developing away of thinking comeswith studying and exercising. Thus,

thinking computationally comes with learning syntax and practicing coding. We will start building

these abilities in Chapter 1. In the next part, Getting ready, you will download, install, and learn how

to use the Jupyter/Python environment.

xiv

GETTING READY
In this part, we will set up the Jupyter/Python environment and learn how to use it. Let’s start this

exciting journey!

The Jupyter/Python environment

Aneasyway to think about the Jupyter/Python environment is to consider it as a Russian doll—those

wooden dolls of decreasing size nested one inside another (Figure 2). The largest doll is JupyterLab,

which is aweb-based environment inwhichwe can open, organize, andwork onfiles of various types.

In JupyterLab, there is JupyterNotebook, which is aweb-based applicationwherewe canwrite code

with narrative. Jupyter Notebook supports several programming languages, one of which is Python.

And finally, Python is enriched by an extraordinary amount ofmodules and packages that allow us to

adduseful functionalities tocode. Let’s install theJupyter/Pythonenvironmentandseehow itworks!

Web-based
environment

Web-based app for
code with narrative

Programming
language

Modules
and packages

rand
om

time

sys

Figure 2. The Jupyter/Python environment represented as a Russian doll,
where each component is included in the previous one.

Installing the Jupyter/Python environment
You can install JupyterLab, Jupyter Notebook, Python, and its scientific packages all at once through

Anaconda, a commonly used distribution for scientific computing. Go to theAnacondawebsite, http
s://www.anaconda.com/products/individual, and click download. It might take a fewminutes.

Once downloaded, install Anaconda like any other software: click nextwhen required, and leave the

default options (unless you have specific requirements). The installation might take a few minutes

too. When Anaconda is installed, open the Anaconda Navigator by double-clicking its icon, which

looks like theone inFigure3, box1. Onceopened, youwill seeall the softwarecontained inAnaconda,

including JupyterLab (Figure 3, box 2), Jupyter Notebook (Figure 3, box 3), and Spyder (Figure 3, box

4). In this book,wewill code in Pythonusing JupyterLab as aworking environment. So let’s learn how

3

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Getting ready

to use it!

1

2 3

4

5

Figure 3. Anaconda interface: (1) icon, (2) JupyterLab, (3) Jupyter Notebook,
(4) Spyder, and (5) JupyterLab launch button.

JupyterLab
JupyterLab is an environment where we can code in an organized and efficient way. Open it by click-

ing the Launch button in the JupyterLab panel in Anaconda (Figure 3, box 5). You will see something

similar to Figure4. Beloware themost relevant features of JupyterLab and some suggestions onhow

best to use it.

• JupyterLab is a web-based environment. When you launch JupyterLab, the first thing you’ll notice is

that it starts in the browser. However, its address contains localhost (Figure 4, box 1), whichmeans

that you are actually working locally, that is, on your computer. In other words, you do not need to

be connected to the internet to use JupyterLab.

• Top bar (Figure 4, box 2). The items in the top bar, such as File, Edit,View, etc., are quite intuitive and

similar tomanyother software. Wewill describe themost relevant items throughout the book, but

go ahead and start exploring them! For now, just notice that when clicking some top bar buttons

(for example, File), some of the items that appearmight be light gray because they are disabled (for

example, Save As..). This is because they refer to Jupyter Notebook, which wewill open in the next

section. Finally, a fun feature of JupyterLab is that you can set a dark theme. If youwant that, go to

Settings, then JupyterLab themes, and click on JupyterLab Dark.

• Browsing and opening files. On the left side of JupyterLab, you can find a panel with some vertical

tabs (Figure4, box3). Thefirst tabcontains an icon representinga folder, and, fornow,wewill focus

only on this one. The folder tab opens a panel on its right, which contains a few features. The first is

a top bar (Figure 4, box 4), containing a symbol, +, which allows us to start a launcher (Figure 4, box

7); an icon representing a folder containing a +, to create a new folder; a vertical arrowpointing up,

touploadanewfile; anda circular arrow, to refresh the contentof the currentdirectory—in coding,

4

Getting ready

3

7

4

5

6

8

2
1

Figure 4. JupyterLab interface, containing: (1) local URL, (2) top bar, (3) lateral tabs, (4) folder browser top
bar, (5) folder browser, (6) folder content, (7) launcher, and (8) Jupyter Notebook launch button.

we often say directory instead of folder. Right below, there is a box to search for files. Then, there

is the path of the working directory (Figure 4, box 5)—that is, the folder where we are currently

opening and saving files. And below, there is a list of the directory content (Figure 4, box 6). In

JupyterLab, you can open an existing file only from this panel, and not by double-clicking the file in

your computer folder. Therefore, you need to know how to navigate folders from JupyterLab. To

go back to a previous folder, click on a folder name in Figure 4, box 5 (for example, to go back to the

previous folder in this screenshot, youwould click on book). To go into a sub-folder—a folder in the

current folder—just double-click on the sub-folder listed in the folder panel (Figure 4, box 6). Last

thing: when clicking on the folder icon (Figure 4, box 3), the whole file browser panel toggles out,

meaning it disappears. When re-clicking, thewhole panel toggles back in, so it reappears. Toggling

out can be convenient if you have a small screen.

• Launching tools. The launcher is the place where you can open new notebooks, consoles, terminals,

text files, etc. (Figure 4, box 7). As an alternative, you can open newfiles and tools from the top bar

(Figure 4, box 2) by clicking on File, thenNew, and then selecting the file type youwant. It’s time to

open a Jupyter Notebook!

5

Getting ready

Jupyter Notebook
To open a Jupyter Notebook, go to the launcher and click the Notebook icon (Figure 4, box 8). A new

Notebook opens in the launcher area (Figure 5, box 2), and it is visible asUntitled.ipynb in the browser

panel (Figure 5, box 1). Notebooks have the extension .ipynb, which stands for interactive python

notebook. To give the Notebook an appropriate name, right-click on Untitled.ipynb in the browser

panel (Figure 5, box 1). Then, clickRename, and change it to any name youwant—for example, practic-

ing_cells.ipynb. As youmight have noticed, by right-clicking on the file name, you can perform several

other actions, such as delete, cut, copy, duplicate, andmore.

Let’snowfocusonaNotebookcontent. AJupyterNotebook isessentially afile containinga sequence

of cells, that is, grey rectangles like the ones you see in Figure 5, box 4. Each cell can contain code

or narrative, as we will see in a bit. The blue bar on the left side of a cell (Figure 5, box 5) indicates

that the current cell is the active cell. In the presence of multiple cells, we can make a cell active by

clicking on the square brackets [] on the cell left side. When a cell is active, we can perform several

operations in variousways, either by keyboard commands or via theNotebook top bar (Figure 5, box

3, enlarged in Figure 6), the JupyterLab top bar (Figure 4, box 2), or by right-clicking in the cell! This

might sound redundant, but it is conceived to help coders with different habits—some prefer using

keyboard commands, others prefer clicking on the screen—conveniently perform the cell operations

they need. If there are too many options for you, then just choose one way and stick to that! Below

are some useful cell operations and some of the possible ways to perform them.

2

3

1

5

4

Figure 5. A Jupyter Notebook opened in JupyterLab. (1) Notebook in the folder browser, (2) Jupyter
Notebook, (3) Jupyter Notebook top bar, (4) cells, (5) currently active cell.

6

Getting ready

• Creating a cell: To create a new cell below the active cell, pressB, for below, or the plus button in the

Notebook top bar (Figure 6, item 2). The newly created cell becomes the active cell. We can also

create a new cell above the active cell by pressing A, for above (there is no corresponding top bar

button).

• Deleting a cell: To delete the active cell, press D twice, or click on the scissor button (Figure 6, item

3).

• Copying a cell: To copy the active cell, first pressC and thenV (without commandor control!), or item

4 to copy, and then item 5 to paste (Figure 6).

• Undoing or redoing cell operations: To undo a cell operation (for example, if you have deleted a cell by

mistake), press Z, or in JupyterLab top bar (Figure 4, box 2), go to Edit, and thenUndo cell operation.

Similarly, to redo a cell operation, simultaneously press shift and Z, or in JupyterLab top bar, go to

Edit and then Redo cell operation.

• Moving cells: Left-click on the square brackets [] of the active cell, and while holding down the

mouse button, move the cell up or down. When you reach the position you want to move the cell

to, release. As an alternative, you can go to Edit in the JupyterLab top bar (Figure 4, box 2) and then

click onMove Cells Up orMove Cells Downs.

• Add line numbers. Line numbers are very useful when coding—you’ll come to realize this starting in

Chapter 1. To add line numbers, go to View in the JupyterLab top bar (Figure 4, box 2), and then

click Show Line Numbers.

• Other operations. You can split or merge cells, enable or disable scrolling for output, etc. by going

to the JupyterLab top bar (Figure 4, box 2), and then see the options in Edit, or by right-clicking in a

cell and browsing the options that appear. Just explore them!

1 2 3 4 5 6 7 8 9 10

Figure 6. Jupyter Notebook top bar: (1) save Notebook, (2) add cell, (3) cut cell, (4) copy cell, (5) paste cell,
(6) run cell, (7) interrupt kernel, (8) restart kernel, (9) restart kernel and runwhole Notebook,

and (10) define cell as code ormarkdown.

What about the remaining buttons in Figure 6? The first button representing a floppy disk—yes, once

upon a time we saved data on floppy disks!—is to save the Notebook. The buttons 6 to 9 are used to

execute code, and youwill learn how to use them in Chapter 1 (button 6) andChapter 7 (buttons 7 to

9).

And finally, time to talk about cell content! As we mentioned before, a cell can contain two things:

code or narrative. By default, JupyterNotebook cells are code cells. To transforma cell into a text cell,

press M on the keyboard, or click the drop-down menu in the Jupyter Notebook top bar (Figure 6,

item 10), and selectMarkdown.Markdown is a simplified version of HTML, the coding language used

to createwebsites. This iswhy the Jupyter environment isweb-based: to use the rich features ofweb

browsers! Writing the narrative in a Notebook is fundamental to embedding code into explanations

that make workflows easy to understand. You can learn how to write in Markdown in the “in more

7

Getting ready

depth” session in Chapter 22. And last but not least, cells can contain code. The remainder of the

book will be about that! So, it’s time to start coding, but before doing that, one last bit: you need to

download the Jupyter Notebooks associated with this book.

Downloading the book material
Throughout the rest of the book, youwill find 38 chapters. For each chapter, there is a Jupyter Note-

book, whose file name includes the corresponding chapter number. Each Notebook contains the ex-

amples discussed in the text so that you can practice and understand while reading. Download the

Notebooks at www.learnpythonwithjupyter.com. I highly recommend that you save the Note-
books in a new folder—not in theDownload folder—so that you don’t mix them upwith other files you

download for other purposes. If you feel like going a step further, I really recommend that you create

this folder in a cloud service, so that you do not lose your files in case your computer breaks or has is-

sues (yes, computers are machines and they break!). As for cloud services, you can use Google Drive

(https://www.google.com/drive), Dropbox (https://www.dropbox.com), or any others that
you prefer. Using these tools is very easy. Download the program that installs the system on your

computer. After the installation, you will see a new folder. Just create the folder that is going to con-

tain the Notebooks in the newly created cloud folder, and all your files will always be automatically

synchronized and saved.

Finally, in each chapter of the book, youwill find coding exercises. I recommend that you create a sep-

arate folder called Exercises, or something similar, and inside this folder, create a Jupyter Notebook

for the exercises of each book chapter. Creating Notebooks yourself will strengthen your organiza-

tional skills andwill allow you to become evenmore familiar with the Jupyter/Python environment.

At this point, we are really ready. Let’s start coding!

8

www.learnpythonwithjupyter.com
https://www.google.com/drive
https://www.dropbox.com

PART 1
CREATING THE BASICS
It’s time to start coding! In this part, youwill learn the basic elements thatwewill use throughout the

whole book. You will learn about strings — that is, a data type that contains text — and the concate-

nation operation, used to combine strings. You will also learn how to ask questions and how to print

out information. Andmost importantly, youwill learn what a variable is. Let’s get started!

1. Text, questions, and art
Strings, input(), and print()

Programming languages are written languages, and the core of written communication is text. How

is text represented in Python? How can we ask a question to a person? And how can we provide

information to a person? To answer these questions, let’s open Jupyter Notebook 1 and start!

1. Writing text: Strings
In coding, we use the word string to refer to text. We can define strings as follows:

Strings are text in between quotes

Let’s look at the two examples below. On the left side, we see the code as it is in Jupyter Notebook 1.

On the right side, we see how to pronounce the code. Let’s read the code out loud:

[]: 1 "This is a string" This is a string

[]: 1 'Everything you write between quotes is a
string'

Everything you write between quotes
is a string

Now let’s consider the following statements. Are they true or false?

True or false?
1. A string contains text T F

2. A string is in green in Jupyter Notebook T F

3. Quotes can be either single or double T F

Computational thinking and syntax
Let’s analyze the code above in detail! In each cell, there is a string. As we can see, a string is just

some text in between quotes. By text, we mean any characterwe can type on the keyboard: letters,

numbers, symbols, and even the space! Quotes can be double quotes " ", like in the top example, or
single quotes ' ', like in the bottom example. Quotes that start a string are called opening quotes,

whereas quotes that end a string are called closing quotes. When writing a string in Python, we can

use either double or single quotes; we just have tomake surewe do notmix them up. In other words,

ifwe startwritinga stringwithanopeningdoublequote,wemustfinish the stringwitha closingdouble

quote. Similarly, ifwe startwriting a stringwith anopening singlequote,wemustfinish the stringwith

a closing single quote. Strings are a Python data type, whichmeans that they are one of the core parts

of the Python language (see Table 1 at page 4). In Jupyter Notebook, Python strings are in red.

11

Part 1. Creating the basics

Let’s run the first cell. Running a cellmeans executing the code in that cell. In theNotebook, position

the mouse anywhere inside the cell. If you haven’t done it already, click the mouse left button. The

cursor will become a blinking vertical bar. Then, move to the keyboard. If you are on aMacOS, press

shift and return at the same time. If you are on a Windows, press shift and enter at the same time (if

not explicitly written on any key, enter is the key on the right side of the keyboard depicting an angled

arrow). As an alternative, you can click the start button in the Jupyter Notebook top bar (Figure 6,

icon 6, at page 9).

This is how the first cell looks whenwe run it:

[1]: 1 "This is a string" This is a string
'This is a string'

Whenwe run a cell, two things occur. First, a number appears in between the square brackets on the

left sideof thecell. In this case, thenumber is1because this is thefirst cellwe ran. Second,weexecute

the code. In this case,weget to see the content of the cell; that is, 'This is a string'. JupyterNote-
book shows the string in between single quotes, even when the string is written in between double

quotes. Asmentioned above, single and double quotes are equivalent.

Let’s run the second cell. Like before, left-click anywhere inside the cell. Then, press shift and return if

onMacOS, or shift and enter if onWindows, or click the start button in the Jupyter Notebook top bar.

Here is what we get:

[2]: 1 'Everything you write between quotes is a
string'

Everything you write between quotes
is a string

'Everything you write between quotes is a string'

Two things occurred again. First, the number 2 appeared in between the square brackets on the left

side of the cell, showing that this is the second cell we ran. As is becoming clear, the number on the

left side between square brackets indicates the order of execution of the cells. Second, we can see

the string contained in the cell: 'Everything you write between quotes is a string'.

2. Asking questions: input()
In all programming languages there are ways to ask questions to a person, whomwe usually call the

user. This is a very important feature because it allows the interaction between a computer and a

human being. What does this mean? Let’s look at the code! Read the two cells below out loud (pro-

nunciation on the right):

[]: 1 input ("What's your name?") input what's your name?

[]: 1 input ("Where are you from?") input where are you from?

What does the code inside the cells do? Get a first hint by solving the following exercise.

12

Chapter 1. Text, questions, and art

Match the sentence halves
1. What's your name? is a. it is colored green

2. input() is a built-in function and b. by round brackets

3. When running a cell containing input() c. a string

4. A built-in function is always followed d. we can answer a question

OLD COLORS

NEW COLOR

Computational thinking and syntax
Let’s understand how these lines of codework! Let’s run the first cell. Wewill get a text box:

[*]: 1 input ("What's your name?") input what's your name?
What's your name?

Type your name in the rectangle (I will write mine!):

[*]: 1 input ("What's your name?") input what's your name?
What's your name? Serena

And now press return or enter on the keyboard. You will see the following (you will see your name, of

course!):

[3]: 1 input ("What's your name?") input what's your name?
What's your name? Serena
'Serena'

A few key things have happened here! First, the number on the left side of the cell turned to 3 as

expected. Butwhileanswering thequestion, insteadof thenumber3, therewasa star symbol (*). This
indicates that a cell has started to run but has not finished yet. To complete the cell run and execute

the code, we have to press return or enter after typing the answer. If the cell run is not completed,

the code in the cell does not get executed, and in addition, we will not be able to run the following

cells. Now, let’s look at the code. We know that "What's your name?" is a string, because it is text in
between quotes and it is colored red. What about input()? input() allows us to ask a question to a
user. In Jupyter Notebook, input() creates a text box (a white rectangle) where we can insert some
text. input() performs a specific task and is called a built-in function.

A built-in function is a command that performs a specific task

Wecan recognize if a codeelement is abuilt-in functionby twocharacteristics. First, in JupyterNote-

book built-in functions are always green. Second, built-in functions are always followed by parenthe-

ses (). In thisbook, insteadofparentheses, wewill call them roundbrackets, todifferentiate fromother

types of brackets that we will encounter in the chapters that follow. In between the round brackets,

we often write an argument, which for input() is a string containing the question we want to ask.
Built-in functions are very useful, as they contain code written by the creators of a programming lan-

guage to facilitate ease-of-use when coding.

13

Part 1. Creating the basics

Let’s run the next cell:

[*]: 1 input ("Where are you from?") input where are you from?
Where are you from?

Similarly to before, now enter your country of origin in the text box (I will typemine!):

[*]: 1 input ("Where are you from?") input where are you from?
Where are you from? Italy

Nowpress returnor enter on the keyboard. Youwill see anoutput similar to the following (youwill see

your country of origin!):

[4]: 1 input ("Where are you from?") input where are you from?
Where are you from? Italy
'Italy'

What happened here is similar to the previous cell. Let’s summarize it: the number on the left of

the cell turned to 4 because this is the fourth cell we ran. The built-in function input() created a text
box in Jupyter Notebook in which we could answer the question contained in the string we gave as

an argument. Too concise? Let’s try again: when we run the cell, the built-in function input() shows
us the question, which we put in between the round brackets as a string, and it creates a text box in

whichwe can type the answer. After typing the answer, we press return or enter to complete the code

execution.

At this pointwe can ask ourselves: where dowe see input() in action in everyday life? Every timewe
are asked to type something on a device, there is a function similar to input() behind it! For exam-
ple, this is the case when we write our names to open a new account, enter the amount we want to

withdraw from an ATM, or fill out an online form.

Finally, it is important to mention that when we write code, we wear two hats— that is, we have two

roles: we are at the same time programmer and user! When writing code, we wear the programmer

hat: we create code to perform a task, design code structure, and define user messages. When test-

ing code, we wear the user hat: we check whether the code does what expected, is easy to use, and

whether the user interaction is pleasant. When coding, we switch hats continuously!

3. ASCII art: print()
Wenowknowhowtoaskaquestion toauser, buthowdoweprovide themapieceof information? We

use thebuilt-in functionprint()! Thereare severalways to learnabout print(), and the followingone
is indeed a lot of fun. It involves a type of digital art called ASCII art, by which images can be created

using the symbols on a keyboard. Let’s have a look at the following cell:

[]: 1 print ("/_/\ ")
2 print (">^.^< ")
3 print (" / \ ")
4 print ("(___)__")

14

Chapter 1. Text, questions, and art

What arewe going to print to the screen? The answer is straightforward, but before running the cell,

let’s quickly analyze the code by completing the following exercise.

True or false?
1. print() is a string T F

2. print() can have a string as an argument T F

3. In coding, we print row by row T F

Computational thinking and syntax
Let’s finally run the cell. Here is what we get:

[5]: 1 print ("/_/\ ")
2 print (">^.^< ")
3 print (" / \ ")
4 print ("(___)__")
/_/\
>^.^<
/ \

(___)__

The little cat we created using keyboard symbols gets displayed to the screen. To do so, we used a

new built-in function: print(). print() displays on screen the argumentwe provide— in this case a

string. You might ask: But when we ran the cells 1 and 2, we could see the content of the strings; why

do we need print()? The fact that we could see the strings from cells 1 and 2 is a feature of Jupyter

Notebook. After running a cell, Jupyter Notebook displays the content of the last line but not that

of the previous lines. If we delete the print() function from the code in cell 5, it will display only the

very last string:

[5]: 1 "/_/\ "
2 ">^.^< "
3 " / \ "
4 "(___)__"
'(___)__'

There are a fewmore things to point out by observing the code in cell 5. In a Jupyter Notebook cell,

we canwrite several lines of code. The lines will get executed sequentially. In other words, whenwe

run a cell, Python first executes line number 1, then line number 2, and so on, until the last line of the

cell is reached. In addition, in a string, spaces matter. Spaces are characters, so a space is an element

of a string and it takes its own place. However, spaces do not matter between code elements. For

example, the two lines below are equivalent:

[5]: 1 print ("(___)__")
2 print("(___)__")
'(___)__'
'(___)__'

15

Part 1. Creating the basics

When writing code with some repetition, it is good practice to keep some parallelism between the

lines of code. Compare the codewritten in cell 5 as we did above,

[]: 1 print ("/_/\ ")
2 print (">^.^< ")
3 print (" / \ ")
4 print ("(___)__")

to the same codewritten without aligning closing quotes and closing round brackets, as below:

[]: 1 print ("/_/\")
2 print (">^.^<")
3 print (" / \")
4 print ("(___)__")

We can see that in the second case the code looks somehowmore confusing. Instead, whenwe align

quotes, brackets, and other symbols—as youwill see in the following chapters—we create code that

is more readable and less prone to errors. We will also talk quite a bit about tricks to minimize the

amount of possible errors that wemight introduce in code.

Onemorequestionbefore the recap: wheredowe see the function print() in action in everyday life?
Every time we see a message on a device! For example: ‘Registration completed’, or ‘Thank you for

your purchase’, or ‘Logout successful’. In the underlying code, there is a function similar to print()!

Recap
• The type string is text in between quotes

• input() is a built-in function to ask a user to enter a value
• print() is a built-in function to display a value to screen

Our fingers have memory

When learning tocode, it is very important to typeeverysinglecommand, resisting the tempta-

tion of copying/pasting. Typing helps usmemorize commands in at least twoways. First, when

typing a command we mentally spell it, so we repeat it in our minds, and thus we memorize it.

Second, our fingers can memorize typing patterns. For example, when typing print(), our fin-
gers will automatically remember to type the round brackets right after print. Similarly to a
pianistwhodoes not look at the keyboard but at the sheetmusicwhile playing, wewant to look

not at the keyboard but at the screen while coding. This way of typing is called touch typing

(or blind typing). It helps us be faster andminimize the amount of errorswemake because we

do not have to keepmoving our eyes between the keyboard and the screen. How canwe learn

touch typing? It is very easy; it just requires some practice. The idea is that each finger presses

some specific keys of the keyboard, as in the figure in the next page. We position the left index

finger on the letter F and the right index finger on the letter J — the two little bumps on these

keys define the starting point. The remaining fingers will go on the keys

16

Chapter 1. Text, questions, and art

in the same row. For the left hand, the middle finger will go on the letter D, the ring finger on

S, and the small finger on A. Similarly, for the right hand, the middle finger will go on the letter

K, the ring finger on L, and the small finger on the semicolon. What about the letters G and

H that are in between? When needed, the left index finger will move from F to G, and the right

indexfinger fromJ toH. Thefingerswill thenmoveupward anddownward for theother letters,

maintaining the same reciprocal positions.

1 2 3 4 5 6 7 8 9 0

,

;
:

.

$

/

&%@ +()

=

?

^~

`

!

{ }

][

#

< >

\

Ctrl Alt

Shift

Alt Gr

Caps Lock

Ctrl

Shift

A

YQ W E R T

Z

U I O P

S D F G H J K L

X C V B N M

Figuremodified from https://commons.wikimedia.org/w/index.php?curid=9666341.
By Cy21 - Ownwork, CC BY-SA 3.0.

There are plenty of websites to learn touch typing in a fun way, such as www.typing.com and
www.typingclub.com. They are free, and creating and account is not compulsory. They pro-
vide gradual exercises starting from typing single letters, to syllables, to words, up to whole

sentences. Give it a try?

Ready for some coding exercises? Create a newNotebook and solve the following exercises below. If

you do not remember how to create a newNotebook or new cells, have a look at pages 8 and 9.

Let’s code!

1. Writing strings. Write a string using double quotes. Then, run the cell and observe what happens.

Thenwrite a string using single quotes. Run the cell and observe what happens.

2. Asking questions. Write two questions using the built-in function input() and then answer them.

3. ASCII art. Reproduce at least one of the following pieces of ASCII art:

17

https://commons.wikimedia.org/w/index.php?curid=9666341
www.typing.com
www.typingclub.com

2. Events and favorites
Variables, assignment, and string concatenation

Let’s continue building our basics by learning about variables and string concatenation. What are they?

Let’s find out together using Notebook number 2! Read the example below aloud and try to under-

standwhat the code does:

1. Organizing an event

• You are organizing an event, and you have created the following registration form for the partici-

pants:

REGISTRATION FORM

first_name =

last_name =

NEW COLORS

Registration form for the event participants.

• The first participant comes in and you fill out the form:

[]: 1 first_name = "Fernando" first name is assigned Fernando
2 last_name = "Pérez" last name is assigned Pérez

• Then you print out what you entered in the registration form:

[]: 1 print (first_name) print first_name
2 print (last_name) print last_name

What does the code in these cells do? Let’s get some hints by completing the following exercise.

True or false?
1. The command first_name = "Fernando" assigns the string "Fernando" to the variable

first_name
T F

2. The command print(first_name)will print out Fernando T F

3. The command print(last_name)will print out last_name T F

18

Chapter 2. Events and favorites

Computational thinking and syntax
Any guesses about what happens? Let’s run the first cell:

[1]: 1 first_name = "Fernando" first name is assigned Fernando
2 last_name = "Pérez" last name is assigned Pérez

At line 1 we create a variable called first_name. To the variable first_name we assign the string

"Fernando", which is the value. Similarly, at line 2 we create a variable called last_name, to which
we assign the string "Pérez" as a value. In general, we can assign any value to a variable. For example,
we can register our second guest, Guido van Rossum, by writing:

[]: 1 first_name = "Guido" first name is assigned Guido
2 last_name = "van Rossum" last name is assigned van Rossum

Asyoucansee, thevariablenamesremain thesame(first_nameandlast_name),whereas theassigned
values can be different ("Fernando" or "Guido", "Pérez" or "van Rossum"). We can define variables as

follows:

A variable is a label assigned to a value

In Python, variables are lowercase. When composed ofmultiplewords, these are connected by under-

score, like in first_name. In Jupyter Notebook, variables are black. The symbol = is called assignment

operator. This has nothing to do with the equalswe learned in math! equals has a different symbol in

coding, which wewill see in Chapter 9. In coding we use the symbol = to assign a value to a variable,
and we pronounce it as is assigned. This is a very important concept to remember, and it’s one of the

most counter-intuitive! Symbols are colored purple in Jupyter Notebook.

Let’s now run the second cell:

[2]: 1 print (first_name) print first_name
2 print (last_name) print last_name
Fernando
Pérez

As you might expect, at line 1 we print to the screen the value assigned to the variable first_name,
which is Fernando. At line 2 we print the value assigned to the variable last_name, which is Pérez.
Who is Fernando Pérez? The creator of Jupyter Notebook! And Guido van Rossum? The creator of

Python!

2. Favorites
Time to put together what we have learned so far! Let’s read the following code:

[]: 1 name = input ("What's your name?") name is assigned input what's your name?

[]: 1 favorite_food = input ("What's your
favorite food?")

favorite_food is assigned input what's
your favorite food?

19

Part 1. Creating the basics

[]: 1 print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

2 print ("My favorite food is " +
favorite_food)

print My favorite food is concatenated
with favorite_food

2 print (name + "'s favorite food is " +
favorite_food)

print name concatenated with 's favorite
food is concatenated with favorite_food

What happens in this code? Let’s get some hints by completing the following exercise!

True or false?
1. The answer to the questionWhat’s your name? is assigned to the variable name T F

2. The questionWhat’s your favorite food? is asked before the questionWhat’s your name? T F

3. If the answer to the first question is Terry and the answer to the second question is

mango, then the third print will show Terry’s favorite food is pizza

T F

4. The symbol + can combine a string and a variable containing a string T F

Computational thinking and syntax
Let’s run the first cell:

[3]: 1 name = input ("What's your name?") name is assigned input what's your name?
What's your name? Serena

The namewe enter in the text boxwill be assigned to the variable name.

Let’s run the second cell:

[4]: 1 favorite_food = input ("What's your
favorite food?")

favorite_food is assigned input what's
your favorite food?

What's your favorite food? pasta
Similarly to theaboveexample,whatweenter in thetextboxwillbeassignedtothevariablefavorite_food.

Let’s now run the last cell of this Notebook. What dowe expect the prints to be?

[5]: 1 print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

2 print ("My favorite food is " +
favorite_food)

print My favorite food is concatenated
with favorite_food

2 print (name + "'s favorite food is " +
favorite_food)

print name concatenated with 's favorite
food is concatenated with favorite_food

Hi! My name is Serena
My favorite food is pasta
Serena's favorite food is pasta

At line 1, we print out the union of the string "Hi! My name is " and the value assigned to the vari-
able name. When dealing with strings, the symbol + is called a concatenation symbol, not plus! Con-

catenating simply means chaining together. + allows us tomerge strings, and we can pronounce it as

concatenated with.

20

Chapter 2. Events and favorites

We have now learned the very basics on which we will build our coding skills and knowledge. Now

let’s take just a fewminutes to complete the following exercise, which will help us summarize clearly

the syntax we have learned so far!

Fill in the gaps
Fill in the gaps by inserting what each word is and its color in Jupyter Notebook. See the example in

the first sentence:

1. input() is a built-in function and is colored green .

2. Also print() is a and is colored .

3. name is a and is colored .

4. "My favorite food is" is a and is colored .

5. = is the and is colored .

6. + is the and is colored too.

Recap
• In coding, we assign values to variables

• The symbol = is the assignment operator (and not the equals symbol!), and it can be pronounced is

assigned

• The symbol + is the concatenation symbolwhendealingwith strings (andnot theplus symbol!), and

it can be pronounced concatenated with

Dealing with NameError and SyntaxError

When we write code, we inevitably make mistakes, and we get error messages. Getting error

messages is normalwhen coding. It’s important to learn how to read errormessages so thatwe

can fix errors quickly and keep coding. There are different kinds of errors, and we’ll learn how

to fix them over the course of the book. This is an example of an error:

NameError Traceback (most recent call last)
<ipython-input-6-a0c307bd3f14> in <module>

> 1 print ("Hi! My name is " + ame)
2 print ("My favorite food is " + favorite_food)
3 print (name + "'s favorite food is " + favorite_food)

NameError: name 'ame' is not defined

When encountering an error, we have to perform two steps:

1. Read the last line of themessage, which tells us what type of errors we havemade

2. Look for the green arrow, which shows us the line where the error is.

21

Part 1. Creating the basics

In this case we are dealing with aName error. The last line of the message says: NameError:
name 'ame' is not defined . This is a very common errormessage. It means that there is not

variable 'ame' in your code. This errormessage usually pops up in two cases: whenwemisspell
a variable name, or whenwe have not run a previous Jupyter Notebook cell containing the ini-

tialization (or creation) of the variable. In this examplewe havemisspelled the variable 'name'.
This variable is present at lines 1 and 3. Which line should we look at? The arrow pointing at

line number 1 shows us that the error is at line 1, wherewe can see thatwe typed 'ame' instead
of 'name'. Sowe can correct the typo, rerun the cell, and quicklymoveonwith coding! Another
very common error message is the following:

File "<ipython-input-1-daed5bd3b17e>" , line 1
print ("Hi! My name is " name)

^
SyntaxError: invalid syntax

In this case we have made a syntax error. The last line of the message says: SyntaxError:
invalid syntax, which means that we have forgotten some symbol or punctuation. Where is

the error? For syntax errors, we look at two lines in the message: at the end of the very first

line, we see that we made the error at line 1; after the line of code, we see a hat symbol ^ that

shows us the part of the commandwhere there is somethingmissing.

Ready to exercise? Let’s go!

Let’s code!

1. At the gym. You are the manager of a gym and you have to register a new person. What vari-

ables would you create? Write three variables, assign a value to each of them (make sure they

are strings!), and print them out.

2. At a bookstore. You are the owner of a bookstore and youwant to create a book catalog. You start

with thefirst book: CodeGirlsbyLizaMundy. Youcreate twovariables, book titleandauthor, assign

them the actual title and author, and print them out. Then, pick a book of your choice, create the

two variables again, assign the corresponding values, and print them out.

3. Where are you from? Ask a person what country they come from and where they live. Then print

out three sentences like in cell 5 of the code in this chapter.

4. What’s your favorite song? Askaperson their favorite songand favorite singer. Thenprint out three

sentences like in cell 5 of the code in this chapter.

22

PART 2
INTRODUCTION TO
LISTS AND IF/ELSE
CONSTRUCTS
In this part, youwill learn about lists, which are simply lists of elements of various types—for example,

strings. You will also learn how to manipulate them, that is, how to add, remove, or replace one or

more elements. And finally, youwill learn if/else constructs, which allow for executing code based on

conditions. Ready? Let’s go!

3. In a bookstore
Lists and if... in... / else...

What does a list look like? And how do we use if/else conditions? To answer these questions, let’s

open Jupyter Notebook 3 and begin! Read the following example aloud and try to understand it:

• You are the owner of a bookstore. On the programming shelf there are:

[]: 1 books = ["Learn Python", "Python for all", "Intro
to Python"]

books is assigned Learn Python,
Python for all, Intro to Python

2 print (books) print books

• A new customer comes in, and you ask what book shewants:

[]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print (wanted_book) print wanted book

• You check if you have the book, and you reply accordingly:

[]: 1 if wanted_book in books: if wanted book in books
2 print ("Yes, we sell it!") print Yes, we sell it!
3 else: else
4 print ("Sorry, we do not sell that book") print Sorry, we do not sell that

book

What does the code above do? Get some hints by completing the following exercise.

True or false?
1. On the programming shelf there are 2 books T F

2. If the customerwants a book that is in the programming shelf, you print: Yes, we sell it! T F

3. The if/else block allows us to execute commands based on conditions T F

Computational thinking and syntax
Let’s analyze the code line by line, starting with the first cell:

[1]: 1 books = ["Learn Python", "Python for all", "Intro
to Python"]

books is assigned Learn Python,
Python for all, Intro to Python

2 print (books) print books
['Learn Python', 'Python for all', 'Intro to Python']

On line 1 there is a variable called books, to which we assign a sequence of elements of type string:
"Learn Python", "Python for all", and "Intro to Python". The elements are separatedby commas
and they are in between square brackets. A variablewith this syntax is called list. In our code, books is
a variable of type listwhose elements are of type string. In other words, we can say that books is a list
of strings. A list is defined as follows:

25

Part 2. Introduction to lists and if/else constructs

A list is a sequence of elements separated by commas ,
and in between square brackets []

As its name says, a list is literally a list of elements, similar to a shopping list or a to-do list. It can

contain elements of various types, such as strings, numbers, etc. For now, we will consider only lists

of strings.

Let’s run the second cell:

[2]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print (wanted_book) print wanted book
Hi! What book would you like to buy? Learn Python
Learn Python

You are now familiar with the code in this cell. Briefly summarized, on line 1 we created a variable

called wanted_book, which contains the user’s answer to the question: Hi! What book would you
like to buy? Then, on line 2, we printed the value contained in the variable wanted_book.

Let’s run the third cell:

[3]: 1 if wanted_book in books: if wanted book in books
2 print ("Yes, we sell it!") print "Yes, we sell it!"
3 else: else
4 print ("Sorry, we do not sell that book") print "Sorry, we do not sell that

book"
Yes, we sell it!

Here, we finally meet the if/else construct. Let’s learn how it works by starting from lines 1 and 2.

These lines say if wanted_book, which is "Learn Python", is in books, which is ["Learn Python",
"Python for all", "Intro to Python"] (line 1), print "Yes, we sell it!" (line 2). In line 1, we

checkwhether the value assigned to the variable wanted_book is one of the elements of the list books.
If that is the case, thenwemove to line 2 and print out a positive answer to the user.

What if wanted_book is not in the list? Let’s rerun cell 2 and enter a book that is not in the list:

[4]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print (wanted_book) print wanted book
Hi! What book would you like to buy? Basic Python
Basic Python

In this case, what do you expect when running the cell below? Let’s run it:

[5]: 1 if wanted_book in books: if wanted book in books
2 print ("Yes, we sell it!") print Yes, we sell it!
3 else: else
4 print ("Sorry, we do not sell that book") print Sorry, we do not sell that

book
Sorry, we do not sell that book

26

Chapter 3. In a bookstore

We start again from line 1, wherewe read if wanted_book, which now is "Basic Python", is in books,
which is ["Learn Python", "Python for all", "Intro to Python"]. But this time, "Basic Python"
is not in the list books. Sowe skip line 2, go directly to line 3—where there is else—andproceed to line
4, where we print the string "Sorry, we do not sell that book".

As you candeduce from the example above, in an if/else construct, code is executeddepending on the

truthfulness of a condition. If the condition in the if line is met, or true, we execute the underlying
code. Otherwise, if the condition in the if line is not met, or false, then we execute the code under
else. Therefore, we can define the if/else construct as follows:

An if/else construct checks whether a condition is true or false,

and executes code accordingly:

if the condition is met, the code under the if condition is executed;

if the condition is notmet, the code under else is executed.

Let’s now focus on the syntax. An if/else construct is composed of four parts, explained below:

• if condition (line 1) contains a condition that determines code execution. It is made up of three
components: (1) the keyword if, colored bold green in Jupyter Notebook, (2) the condition itself,
and (3) the punctuationmark colon :

• Statement (line 2) contains the code that gets executed if the condition at line 1 is met

• else (line 3) implicitly contains the alternative to the condition on line 1. This line is always com-
posed of the keyword else followed by the colon :

• Statement (line 4) contains the code that gets executed if the condition at line 1 is not met

Note: else and its following statements are notmandatory. There are cases whenwe do not want to
doanything if theconditionsarenotmet. Someexamplesof this scenarioareprovided in the following

chapters.

Before concluding, let’s zoomevenmore into these lines and focuson twomoreaspects: membership

conditions and indentation. In coding, we can use various types of conditions, and you will see these

throughout the book. In this case, we have amembership condition: wanted_book in books (line 1),
wherewe checkwhether a variable contains one of the elements of a list. In amembership condition,

wewrite: (1) variable name, (2) in, and (3) the list in which wewant to find the element. in is amem-

bership operator. In Jupyter Notebook, this is colored bold green, like keywords. In general, make

sure not to confuse keywords, in bold green, with built-in functions, in fainter green.

Finally, notice that the statements under the if condition (line 2) and under the else (line 4) are al-
ways indented, which means shifted toward the right. An indentation consists of 4 spaces, or 1 tab.

In Jupyter Notebook, when pressing enter or return after writing the if or else lines, the cursor is
always automatically placed at the right indented position. Under an if or an else condition, we can
write as many commands as wewant, but theymust be indented correctly to be executed.

27

Part 2. Introduction to lists and if/else constructs

Complete the table
Up to this point, you have already learned quite a lot of syntax. Complete the following table by using

the example in the first row to summarize the syntax you know so far.

Code element What it is What it does

books A variable of type list It contains a sequence of strings

wanted_book

"Learn Python"

if

in

else

=

+

input()

print()

Recap
• Lists are a Python type that contain a sequence of elements (for example, strings) separated by

commas , and in between square brackets []

• The if/else construct allows us to execute code based on conditions
• Themembership operator in verifies whether an element is in a list
• In Python, we use indentation for statements below if or else

Let’s give variables meaningful names!

One of the fundamental criteria whenwriting code is readability. It is important to write code

that is easy to read both for our future selves and for others. One of the ways to make code

readable is to createmeaningful variable name. As an example, let’s consider the code we an-

alyzed in this chapter. On line 1 of cell 2 we created the variable wanted_book:

[2]: 1 wanted_book = input("Hi! What book would you like
to buy?")

answer is assigned input
Hi! What book would you
like to buy?

Instead of wanted_book, we could have named the variable answer:

[2]: 1 answer = input("Hi! What book would you like to
buy?")

answer is assigned input
Hi! What book would you
like to buy?

28

Chapter 3. In a bookstore

The name answer is logically consistent because this variable contains the answer to the ques-
tion "Hi! What book would you like to buy?". However, answer is not the best choice be-
cause it is a very generic variable name. Variable names should be pertinent, representing the

information they contain. Consider having 10 input() commands in the code. What dowe call

the corresponding variables? We don’t want to call them answer_1, answer_2, ..., answer_10; it
would be hard to remember what we assigned to answer_7, for example. Or, if we later decide
to reshuffle some questions, then we will have to rename the variables to make sure the num-

bers increase consistently. This would generate a lot of confusion and increase the possibility

of errors.

Back to the previous example, the name answerwould also not be meaningful in the following
line of code from cell 3:

[3]: 1 if answer in books: if answer in books

It does not make much sense to look for an answer in a list of books! But it makes more sense

to look for a wanted book in a list of books:

[3]: 1 if wanted_book in books: if wanted book in books

Let’s code!
For each of the following scenarios, create code similar to that presented in this chapter.

1. In an art gallery. You are the owner of an art gallery. Write a list of some paintings you sell. A new

customer comes in, and you askwhat painting shewants to buy. You checkwhether you have that

painting and reply accordingly.

2. In a travel agency. You are the owner of a travel agency. Write a list of some travel destinations you

sell tickets for. A new customer comes in, and you ask where he wants to go. You check whether

you offer that travel destination and reply accordingly.

3. In a chemical lab. You are the manager of a lab. On a shelf there some jars containing chemicals.

Write a list containing the names of the chemicals. One of the labmembers comes to you and you

askwhat chemical shewants. You check in your systemwhether you have that chemical and reply

accordingly.

4. In a tea room. Youare theownerof a tea room. Write a list of teas youoffer. Anewcustomer comes

in, and you ask what tea he wants. You check on the menu whether you serve that tea and reply

accordingly.

29

4. Grocery shopping
List methods: .append() and .remove()

Whataremethods? Andwhatdo.append()and.remove()do? Toanswerthisquestions, openJupyter
Notebook 4 and follow along. Let’s start with the following example:

• You are going to a grocery store where you have to buy some food:

[]: 1 shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives

2 print (shopping_list) print shopping list

• Right before leaving home, you ask yourself if you have to buy something else. If the item is not in

the list, you add it:

[]: 1 new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print (shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print (shopping_list) print shopping list

• Finally, you ask yourself if you have to remove an item. If so, you remove the item from the list:

[]: 1 item_to_remove = input ("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print (shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print (shopping_list) print shopping list

To get a better idea ofwhat happens in this code,match the sentence halves in the following exercise.

30

Chapter 4. Grocery shopping

Match the sentence halves
1. The variable shopping_list contains a. we remove it from the shopping list

2. If the new item is not in the shopping list b. to remove an element from a list

3. If the item to remove is in the shopping list c. "carrots", "chocolate", and "olives"
4. Themethod .append() allows us d. we add it to the shopping list

5. Themethod .remove() allows us e. to add an element at the end of a list

OLD COLORS

NEW COLOR

Computational thinking and syntax
Let’s dig into the code by running the first cell:

[1]: 1 shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives

2 print (shopping_list) print shopping list
['carrots', 'chocolate', 'olives']

We start with a list called shopping_list, which contains three strings: "carrots", "chocolate", and
"olives" (line 1). Then, we print the shopping list to the screen (line 2).

What does .append() do? Let’s run the second cell:

[2]: 1 new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print (shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print (shopping_list) print shopping list
What else do I have to buy? carrots
carrots is/are already in the shopping list
['carrots', 'chocolate', 'olives']

In this cell, weask theuser to input anew itemtobuy, and theanswer is saved in thevariable new_item
(line 1). Then, we act according to the value contained in new_item. If new_item is already in

shopping_list (line 2), we print out amessage saying that the item is already in the shopping list (line

3). Tomake themessagemore precise, we concatenate the string in new_itemwith the string "is/are
already in the shopping list". Then, we print out the shopping list to check that the item is actu-

ally in the list (line 4).

31

Part 2. Introduction to lists and if/else constructs

What if the item is not in the shopping list? Let’s rerun the cell and enter an item that is not in the list:

[3]: 1 new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print (shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print (shopping_list) print shopping list
What else do I have to buy? apples
['carrots', 'chocolate', 'olives', 'apples']

This time, we entered apples in the text box created by input() (line 1). Because apples is not in the
shopping list (line 2), we skip the commands at lines 3 and 4 and jump directly to the else (line 5) to
execute the commands below. We add the new item to the list (line 6), and we print out the list to

check whether we added the element correctly (line 7).

Howdowe add a newelement to a list? Let’s have a closer look at line 6. Here, themethod .append()
adds the element new_item to the shopping_list. Note that .append() always adds an element at the

end of a list. As we said, .append() is a method. But what is a method? A preliminary definition (we’ll

redefine it whenwe talk about object-oriented programming, at the end of the book) is as follows:

Amethod is a built-in function for a specific variable type

You can recognize that methods are functions because they are followed by round brackets. How-

ever, a method has its own syntax, which is composed of four elements: (1) variable name, (2) dot,

(3) method name, and (4) round brackets. In the round brackets, there can be an argument, such as

new_item in this case. Different data types have different methods. For example, .append() can be
used for lists but not for strings. Lists have a total of eleven methods, and we will learn all of them

throughout this book. Methods are colored blue in Jupyter Notebook.

32

Chapter 4. Grocery shopping

Finally, what does .remove() do? Let’s run the last cell:

[4]: 1 item_to_remove = input ("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print (shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print (shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

This time, we ask the user what item they want to remove (line 1). If the item to remove is in the

shopping list (line 2), then we remove the item (line 3) and print out the resulting list (line 4). How do

we remove an item? We use .remove(), which is the list method to remove an item from a list. The

syntax is the same as for .append() and any other method: list name followed by dot, method name,
and round brackets, which can contain an argument. As an argument, .remove() takes the element to
be removed from the list.

What ifwe answer the question "What do I have to remove?"with an element that is not in the list?
Let’s have a look:

[5]: 1 item_to_remove = input ("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print (shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print (shopping_list) print shopping list
What do I have to remove? grapes
grapes is/are not in the list
['carrots', 'chocolate', 'apples']

In the text box created by input(), we entered grapes (line 1), which is not in shopping_list (line 2).
Therefore, we skip lines 3 and 4 and jump to the else at line 5. There, we print out a message saying
that item_to_remove is not in the shopping list (line 6) and print out the shopping list for final check
(line 7).

33

Part 2. Introduction to lists and if/else constructs

Complete the table
In Python, we use a lot of punctuation marks. Sum up what you have seen so far by completing the

following table, using the example in row 1.

Punctuation symbol What it’s called What it does

'' or "" Single quotes or double quotes They contain a strings

()

[]

:

,

.

Recap

• Themethod .append() adds an element at the end of a list

• Themethod .remove() removes an element from a list

Why do we print so much?

When coding, it is important to keep control of variable’s values. And particularly when learn-

ing to code, every time we create or modify a variable, it’s important to make sure the code

doeswhat it is intended to do. Printing is an easyway to check that variablemodifications cor-

respond to our intentions. As an example, consider the code in cell 4, and let’s focus on the

if condition and its statements (lines 2–4). Let’s rewrite it without the printing command:

[4]: 1 item_to_remove = input ("What do I have
to remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping list
3 shopping_list.remove(item_to_remove) shopping list dot remove item to

remove
What do I have to remove? olives

How do we know that the code actually worked correctly? That is, how do we know whether

'olives' was actually removed from shopping_list? We can assume that it happened, but

we cannot be sure until we see it with our eyes. So, we need to print. Let’s rewrite the

34

Chapter 4. Grocery shopping

code by adding print() back to line 4:

[4]: 1 item_to_remove = input ("What do I have
to remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping list
3 shopping_list.remove(item_to_remove) shopping list dot remove item to

remove
4 print (shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

Becauseweprinted,wecanmakesure that'olives' isnot in theshopping_list. Therefore, our
code accomplished what we intended. Always print extensively when coding; you can always

remove the print() function later on.

Let’s code!

1. For each of the following scenarios, create code similar to the one presented in this chapter.

a. Organizing an event. You are organizing an event. Write a list of what you need to buy. Then

ask your co-organizer what else you have to buy. If the item is not in the list, add it. Finally,

ask your co-organizer if there is anything you need to remove from the list. If so, remove the

item from the list.

b. Favorite cities. Write a list containing names of cities. Ask a friend their favorite city. If the

city is not in the list, add it. Then, ask your friend if they donot like one of the cities you listed.

If so, remove the city from your list.

2. Shoe store. You are the owner of a shoe store, and you have to place a new order for the next sum-

mer season. You go to the storage room, and you create a list of the remaining shoes: sneakers,

boots, ballerinas. You know that in summer your customers will want sandals, so you add them to

the list. However, they are not going to buy boots, so you remove them from the list. After you

get the new supplies, a new customer comes in. You askwhat shoes hewants to try, and he replies

that he’d like to try sandals. You check in your list and reply accordingly. Then you ask if he wants

to have a look at something else, and he replies that he’d like to try boots. You check in your list

again and reply accordingly.

3. Currency exchange office. You work at a currency exchange office. The available currencies are

Euros, CanadianDollars, andYen,whereas theSwiss Franc is unavailable, so youwill have toorder

it. Create a list of available currencies and a list of currencies to order. A new customer comes in;

you askwhat currency shewants. After she replies, you check in the list of available currencies. If

the currency shewants is available, you tell her that you have it, remove the currency from the list

of available currencies, and add the currency to the list of currencies to order. If the currency she

wants is not available, you tell her that you do not have that currency, and add the currency to the

list of currencies to order.

35

5. Customizing the burger menu
List methods: .index(), .pop(), and .insert()

Let’s learn threemore listmethods: .index(), .pop(), and .insert(). Open JupyterNotebook 5, and
read the following example aloud.

• You are at a food court, ready to order. Today’s menu includes a burger, a side dish, and a drink:

[]: 1 todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke

2 print (todays_menu) print today's menu

• You are happywith burger and coke, but youwant to change the side dish from salad to fries. To do

so, you:

1. Look at the position of the side dish in themenu:

[]: 1 side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

2 print (side_dish_index) print side dish index

2. Remove salad from the side dish position:

[]: 1 todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
2 print (todays_menu) print today's menu

3. Add fries to the side dish position:

[]: 1 todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

2 print (todays_menu) print today's menu

What happens in this code? Get some hints by completing the following exercise.

True or false?
1. Themethod .index() gives us the position of an element in a list T F

2. The position of salad is 2 T F

3. We remove the element in position side_dish_index and insert a new element in the

same position

T F

4. .index(), .pop(), and .insert() are three stringmethods T F

36

Chapter 5. Customizing the burger menu

Computational thinking and syntax
Let’s analyze the details of the code! Let’s run the first cell:

[1]: 1 todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke

2 print (todays_menu) print today's menu
['burger', 'salad', 'coke']

Wecreate a list called todays_menu containing three elements of type string—"burger", "salad", and
"coke" (line 1)—andwe print it out (line 2).

In the second cell, wemeet the new list method .index(). What does it do? Let’s run the cell:

[2]: 1 side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

2 print (side_dish_index) print side dish index
1

The method .index() looks for the element "salad" in the list todays_menu and tells us its position.
More technically, we say that .index() takes the argument "salad" and returns its index. The posi-
tion of "salad" is then assigned to the variable side_dish_index (line 1), which we print out (line 2).
Note that in coding, we use the two synonyms index and position interchangeably.

Why is "salad" in position 1 and not 2? This is because in Python we count elements starting from
0, as you can see in the figure below: "burger" is in position 0, "salad" in position 1, and "coke" in
position 2.

0 1 2

"salad" "coke"todays_menu = "burger"

Note: The quotes are copied/pasted from a webpage – Could not find a font with straight quotes

Representation of the list todays_menu: each square is a list element,
and the number above is the corresponding index.

Finally, note that an element position is a number. In Python, zero, positive, and negativewhole num-

bers are called integers, abbreviated as int. In our example, the variable side_dish_index contains
the number 1, and it is of type integer.

Let’s discover what .pop() does by running the next cell:

[3]: 1 todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
2 print (todays_menu) print today's menu
['burger', 'coke']

The method .pop() removes the element in position side_dish_index from the list todays_menu. In
other words, .pop() takes side_dish_index as an argument and removes the element at that index,

which is "salad". In the previous chapter, we saw another method that deletes an element from a

list: .remove(). What is the difference between the twomethods? Themethod .remove() deletes an
element of a certain value, whereas .pop() deletes an element in a specific position.

37

Part 2. Introduction to lists and if/else constructs

And finally, let’s learn themethod .insert(). Let’s run the last cell:

[4]: 1 todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

2 print (todays_menu) print today's menu
['burger', 'fries', 'coke']

The method .insert() allows us to add an element at a specific index. It takes two arguments: (1)

the indexwherewewant to insert the new element and (2) the value of the new element. In this case,

wewant to insert at position side_dish_index, which is position1, the string "fries". Similarly, in the
previous chapter we saw another method to add an element to a list: .append(). What’s the differ-

ence? Themethod .append() adds an element at the end of a list, whereas .insert() adds an element
in a specific position of a list.

Finally,whendealingwith lists,wemust alwaysbeawareof thateachelementhasaposition. In some

cases, it is more convenient to work directly on the elements and usemethods like .append()
and .remove(). In other cases, it ismore appropriate towork on elements’ positions, sowe usemeth-
ods such as .index(), .pop(), and .insert(). Note that .append(), .remove(), .pop(), and .insert()
modify the list. On the other side, .index() gives us some information about the list, andwe can save
this information in a separate variable. Lastly, .append(), .remove(), .index(), and .pop() take only
one argument, whereas .insert() takes two arguments, which are position and new element.

Complete the table
So far youhave learnedfive listmethods. Summarizewhat theydoby completing the following table.

List method What it does

.append()

.remove()

.index()

.pop()

.insert()

Recap
• Themethod .index() returns the position of an element in a list

• Themethod .pop() removes an element in a certain position from a list

• Themethod .insert() adds an element in a certain position to a list

• Indices (or positions) of elements start from 0 and increase in increments of one unit; they are of

type integer

38

Chapter 5. Customizing the burger menu

We code in English!

During a coffee break, a colleague once toldme, “Isn’t it crazy that when English speaking peo-

ple code, they actually do it in their ownmother tongue? I mean, when they say if, they actually

mean if!” I had never thought about it. For me, an Italian mother tongue, if was just a key-
word composed of two symbols. Reading if book in books or ab book in bookswas exactly
the same. I had learned to look at keywords and variable names as abstract symbols with no

intrinsic meaning; they were just entities with a specific function. After that conversation, I

mentally translated keywords and variable names into my mother tongue, and everything ac-

quired much more meaning and made so much more sense! I grasped the importance of vari-

able names (they actually have a meaning in English!), and thus, I started writing commands

like if book in books, instead of if variable_1 in list_1. Now, when I code, I mainly think
in English. But that translation process helpedme acquire more awareness andmakemy code

much more readable. In Chapters 4 and 5, we learned five list methods. Their names actually

have a meaning in English. Remove, insert, and index are pretty straightforward. To remember

that append adds new elements at the end of a list, one can think of the appendix of a book,

which is always at the end, or of the appendix in the intestine, which is somewhere at the end

of the abdomen. To remember pop, one can think of making popcorn, like little explosions, that

here remove elements from a certain position. Whether English is your native tongue or not,

remember that we code in English!

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Getting a new bike. You go to a bike store to buy your new bike. There you find a bike you like:

it is blue, electric, and has gears. Write a list with these characteristics. You are happy with

the bike being electric and having gears, but you would like to change its color. To do so, you

(1) look at the position of the blue color in the bike option list, (2) remove the blue color, and

(3) add the color youwant.

b. Ordering a T-shirt online. You are ordering a new T-shirt online. You find a T-shirt you like,

which is red, with a round neck, and with a print add your text here. Write a list with these

characteristics. Now you want to add your own text to the T-shirt. To do so, you (1) look at

the position of add your text here, (2) remove add your text here, and (3) add the text youwant

to be printed on your T-shirt. After completing the exercise, can you think of an alternative

way to change the T-shirt print?

2. Steve Jobs. Given the following list:

steve_jobs = ["somebody", "learn", "use", "a computer", "it teaches us"]

Find out a famous quote by Steve Jobs by doing the following:

a. Add the new string "think" at the end of the list.
b. Add "should" in position 1.

39

Part 2. Introduction to lists and if/else constructs

c. Add "how to" in position 3. Then also add it in position 7.
d. Replace "use"with "program".
e. Add "because" after "a computer".
f. Replace "somebody"with "everybody".
g. Add " - Steve Jobs" at the end.

3. Grace Hopper. Do you know why we say debugging in coding? Let’s find out! Given the following

list:

grace_hopper = ["In 1946", "a moth", "caused", "a malfunction", "in an early",
"electromechanical", "computer"]

Modify it by doing the following:

a. Replace "In 1946"with "From then on".
b. Add "we said" after "computer".
c. Remove the string in position 5(6th element) and add "with a" in the same position.
d. Remove the string in position 3(4th element).

e. Substitute (or replace) "a moth"with "when anything".
f. Remove "in an early".
g. Add "it had bugs in it" at the end of the list.
h. Substitute "caused"with "went wrong".
i. Add " - Grace Hopper" at the end of the list.

40

6. Traveling around the world
List slicing

In the previous two chapters, you learned five methods to manipulate lists: .append(), .remove(),
.index(), .pop(), and .insert(). These list methods are very convenient and easy to remember;
however, theycanmakecodequite cumbersome. InPython, there is analternativeandmorecompact

way to change, add, and remove list elements, which youwill see in the next chapter. This alternative

method is based on slicing; therefore, in this chapter, wewill focus on this topic. Ready to get to know

everything about slicing? Open Jupyter Notebook 6 and follow along! First of all, what is slicing?

Slicingmeans accessing list elements through their indices

If you have a sweet tooth, the word “slicing” immediately reminds you of a slice of cake. And in fact,

there is quite a similarity between slicing a cake and slicing a list! In the first case, you “extract” one

or more cake slices for your guests—and yourself! In the second case, you extract one or more list

elements for subsequent lines of code.

• Let’s meet the list wewill slice:

[1]: 1 cities = ["San Diego", "Prague", "Cape Town", "Tokyo",
"Melbourne"]

cities is assigned San
Diego, Prague, Cape
Town, Tokyo, Melbourne

2 print (cities) print cities
['San Diego', 'Prague', 'Cape Town', 'Tokyo', 'Melbourne']

In this cell, there is a list called cities containing five strings: "San Diego", "Prague", "Cape Town",
"Tokyo", and "Melbourne" (line 1), andwe print it out (line 2).

How are we going to slice cities? The syntax for slicing is very easy. It consists of the list name fol-

lowed by opening and closing square brackets, like this: cities[]. In between the square brackets,
wewrite thepositions of the elementswewant to slice. For this reason, it’s crucial to be aware of the

positions of each element within a list. In the list cities, the elements have the following positions:

0 1 2 3 4

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

Representation of the list cities: each square is a list element,
and the number above is the corresponding index.

Now, how do we write element positions in between the square brackets? There are various rules

depending on howmany elements we want to slice, where they are, and in which direction we want

to extract them. We are going to learn all these rules in the coming pages.

A last note before starting: to better learn about slicing, I suggest thismethod. Every time you read a

slicing task (for example: Slice "Prague"), cover the following codewith a piece of paper. Try to guess

41

Part 2. Introduction to lists and if/else constructs

the code, and compare your guess with the solution. Then carefully read the explanation. Make sure

you fully understand the current example before proceeding to the next one. Enough words, time to

slice!

1. Slice "Prague":

[2]: 1 print (cities[1]) print cities in position one
'Prague'

In this cell,weslice (or access)"Prague", which is inposition1, andweprint it. Asyoucansee,whenwe
slice one single element from a list, wewrite the position of the element itself in between the square

brackets. Thus, we can summarize this syntax as list_name[element_position], and we can read it
as list name in position element position.

Note: For simplicity, in this example and those that follow,we just print the slicedelements. However,

one could assign a sliced element to a variable, like this:

[2]: 1 sliced_city = cities[1] sliced_city is assigned cities in position
one

2 print (sliced_city) print sliced_city
'Prague'

Wewill assign sliced list elements to variables in the following chapters. For now, let’s focus on un-

derstanding how slicing works!

2. Slice the cities from "Prague" to "Tokyo":

[3]: 1 print (cities[1:4]) print cities in positions from one to four
['Prague', 'Cape Town', 'Tokyo']

In this cell, we slice andprint three consecutive elements—"Prague", "Cape Town", and "Tokyo"—that

are at positions 1, 2, and 3, respectively. In between the square brackets, we write two numbers,

separated by a colon :. The first number is the position of the first element we want to slice, and we
call it start. In this case, the start is 1, which corresponds to "Prague". The second number is the
position of the last elementwewant to slice, towhichwemust add 1. We call it stop. The stop always

follows the plus one rule, which simply says thatwemust add 1 to the position of the last element

wewant to slice (you can learn the reasoning behind this rule in the in more depth section at the end

of this chapter). In this example, the position of the last element ("Tokyo") is 3, to which wemust add
1 because of the plus one rule, so the stop is 4. We can summarize the syntax to slice consecutive

elements as list_name[start:stop], and we can read it as list name in positions from start to stop.

3. Slice "Prague" and "Tokyo":

[4]: 1 print (cities[1:4:2]) print cities in positions from one to four
with a step of two

['Prague', 'Tokyo']

In this case,wewant to slice andprint twonon-consecutive elements—"Prague" and "Tokyo"—which

are at positions 1 and 3, respectively. In the code above, you might recognize that 1 is the start, 4 is
the stop (because of the plus-one rule), and 2? That is the step! As you can see, "Tokyo" is positioned

42

Chapter 6. Traveling around the world

2 steps after "Prague": there is 1 step from "Prague" to "Cape Town", and 1 step from "Cape Town" to
"Tokyo", fora totalof2steps. Therefore, thesyntax toslicenon-consecutiveelements is anextension

of the rule we saw in the example above: list_name[start:stop:step], which you can read as list
name from start to stop with step. We can call it the three-s rule, where the three s’s are the initials of

start, stop, and step, respectively.

The most convenient aspect of the three-s rule is that we can simplify it in several situations. For

example, youmightwonder: why didn’t wewrite the step in the example 2, wherewe sliced the cities

from "Prague" to "Tokyo"? Becausewhen elements are consecutive, the step is 1—"Cape Town" is 1
step after "Prague", and "Tokyo" is 1 step after "Cape Town"—and when the step is 1 we can simply
omit it. Obviously, we could havewritten the code specifying the step as follows:

[3]: 1 print (cities[1:4:1]) print cities in positions from one to four
with a step of one

['Prague', 'Cape Town', 'Tokyo']

However, adding the step here is a redundancy, so we simply avoid it.

4. Slice the cities from "San Diego" to "Cape Town":

[5]: 1 print (cities[0:3]) print cities in positions from zero to three
['San Diego', 'Prague', 'Cape Town']

Here we have to slice consecutive elements. So, we specify the start, which is 0 for "San Diego", and
the stop, which is 3 for "Cape Town", butwe can omit the step because it is 1. Interestingly, in this case
we can simplify the three-s rule evenmore! Because the start coincideswith thefirst element of the

list, we can simply omit it:

[6]: 1 print (cities[:3]) print cities from the beginning of the list
to position three

['San Diego', 'Prague', 'Cape Town']

5. Slice the cities from "Cape Town" to "Melbourne":

[7]: 1 print (cities[2:5]) print cities in positions from two to five
['Cape Town', 'Tokyo', 'Melbourne']

Again, we have to slice consecutive elements. Therefore, we specify the start, which is 2 for "Cape
Town", and the stop, which is 5 (because of the plus-one rule) for "Melbourne", but we omit the step
because it is 1. And once more, we can simplify the three-s-rule! How? The stop coincides with the
last element of the list, so we can just omit it:

[8]: 1 print (cities[2:]) print cities from position two to the end of
the list

['Cape Town', 'Tokyo', 'Melbourne']

So far, we have seen the three-s rule applied in its entirety (example 3), and without start (example

4), stop (example 5), and step (example 2). How else can we simplify it? Let’s look at the following

example. How do you think the codewill look?

43

Part 2. Introduction to lists and if/else constructs

6. Slice "San Diego", "Cape Town", and "Melbourne":

[9]: 1 print (cities[0:5:2]) print cities in positions from zero to five
with a step of two

['San Diego', 'Cape Town', 'Melbourne']

This time, theelements toslicearenotconsecutive. Westartat0,which is thepositionof"San Diego",
we stop at 5 (because of the plus-one rule) for "Melbourne", and we specify the step, which is 2, be-
cause we are slicing every second element. However, as you might have guessed, because the start

coincideswith the beginning of the list, and the stop coincideswith the last element of the list, we can

omit both, and rewrite the code above as follows:

[10]: 1 print (cities[::2]) print cities from the beginning to the end
of the list with a step of two

'San Diego', 'Cape Town', 'Melbourne']

You have nowmastered the three-s rule and learned how to simplify it. How else canwe playwith it?

Let’s look at this further representation of the list cities:

0 1 2 3 4

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

positive indices

-5 -4 -3 -2 -1

negative indices

In a list, indices can be positive (from left to right) or negative (from right to left).

InPython, eachelementof a list canbe identifiedbyapositiveor anegative index. Weusepositive in-

diceswhenwe consider elements from left to right andnegative indiceswhenwe consider elements

from right to left. Positive indices start from 0 and increase of 1 unit (0, 1, 2, etc.). Negative indices

start from -1 and decrease of 1 unit (-1, -2, -3, etc.). Note that negative indices do not start from 0 to

avoid ambiguity: the element in position 0 is always the first element of the list starting from the left

side. When are negative indices convenient? For example, when we are dealing with a very long list.

In that case, it would be tedious to count through all elements starting from 0. So we can just count

backwards starting from the last element!

How dowe use negative indices in slicing? Let’s have a look!

7. Slice "Melbourne":

[11]: 1 print (cities[4]) print cities in positions 4
Melbourne

In this example, we extracted "Melbourne" as we learned in example 1: by writing its positive index,
which is4, inbetween the squarebrackets. However, "Melbourne" is the last elementof the list; there-
fore, it is muchmore convenient to use its negative index to slice it, like this:

44

Chapter 6. Traveling around the world

[12]: 1 print (cities[-1]) print cities in position minus one
Melbourne

Theadvantageofusing thenegative index is thatwedonotneed to count throughall the list elements

to get to know the position of "Melbourne". Since "Melbourne" is the last element of the list, we can
just write -1. This saves us time and eliminates possible errors due tomiscounting.

8. Slice all the cities from "Prague" to "Tokyo" using negative indices:

[13]: 1 print (cities[-4:-1]) print cities in positions from minus four to
minus one

['Prague', 'Cape Town', 'Tokyo']

This is in an alternative to example 2. There, we extracted the cities from "Prague" to "Tokyo" using
positive indices, whereas here we want to use negative indices. It might look intimidating, but the

reasoning is always the same. The first element we want to extract is Prague, which is in position -4,
therefore the start is -4. The last elementwewant to extract is Tokyo, which is in position -2, thus the
stop is -1because of the plus one rule. Like in the previous example, using negative indices canbe very
convenient when extracting elements from the end of a long list.

In this example, we saw how to use negative indices for the start and the stop. What about the step?

A negative step allows us to slice elements in reverse order, which means from the right to the left.

Negative steps can be usedwith both positive or negative start and stop. Thismight sound confusing,

but we’ll clarify it the next three examples. Slicing in reverse order is is a very powerful feature, and

it’s the last thing you need to know tomaster slicing. Let’s have a look!

9. Slice all the cities from "Tokyo" to "Prague" using positive indices (reverse order):

[14]: 1 print (cities[3:0:-1]) print cities in positions from three to zero
with a step of minus one

['Tokyo', 'Cape Town', 'Prague']

When slicing—and coding, in general—it is extremely important to be aware of the result we expect.

When slicing in reverse order, having the result inmind can really avoid confusion. So, let’s start from

there. Wewant to print out "Tokyo", "Cape Town", and "Prague". The first element is "Tokyo", which
is in position 3, so the start is 3. The last element is "Prague", which is in position 1. When we slice

in reverse order, instead of the plus-one rule, we have to use theminus one rule, which says thatwe

must subtract 1 from the position of the last element we want to slice. Why? This is very intuitive.

As we know, for the stop, we always want to take the next position. When slicing in direct order, the

nextposition ison the right sideof the lastelement. Therefore,weadd1to its index. Ontheother side,

when slicing in reverse order, the next position is on the left side of the last element. Therefore, we

subtract 1 from its index. Now, back to our example. The last element is "Prague", which is in position
1. And because of the minus one rule, the stop is 0. Finally, we need to define the step. Because the
elements are consecutive, the step should be 1, but because we are going in reverse order, we have

to put aminus in front of it, so the step becomes -1.

In summary, when slicing in reverse order, we have to: (1) make sure we have the first and the last

elements clearly in ourminds, (2) apply theminus one rule to the stop, and (3) use a negative step.

Let’s raise the bar evenmore now! Look at the next example.

45

Part 2. Introduction to lists and if/else constructs

10. Slice all the cities from "Tokyo" to "Prague" using negative indices (reverse order):

[15]: 1 print (cities[-2:-5:-1]) print cities in positions from minus two to
minus five with a step of minus one

['Tokyo', 'Cape Town', 'Prague']

When using negative indices for the start and the stop, the rules are exactly the same as when using

positive indices. The first element we want to slice is "Tokyo", which is in position -2, so the start is
-2. The last element is "Prague", which is in position -4. Because of the minus one rule, we have to
subtract 1 from -4, therefore the stop is -5. And finally, because we are slicing consecutive elements
in reverseorder, the step is -1. As you cannow imagine, usingnegative indices canbevery convenient

when slicing elements at the end of a very long list in reverse order.

11. Slice all the cities (in reverse order):

[16]: 1 print (cities[::-1]) print from the beginning of the list to the
end of the list with a step of minus 1

['Melbourne','Tokyo', 'Cape Town',
'Prague', 'San Diego']

The first element to slice is "Melbourne", which is the last element of the list. Therefore, we can omit
the start. The last element to slices is "San Diego", which is the first element of the list. Therefore,
we can omit the stop too. We justmustwrite the step, which is -1 becausewe are slicing consecutive
elements in reverse order. Easy to remember!

Last note. Learning slicing might feel overwhelming at first because of all the rules, the use of posi-

tive and negative indices, and thinking of lists in direct and reverse order. However, learning slicing

properly is fundamental not only because it is often used in coding, but also because it allows you to

exercise your brain and strengthen your logical thinking. Take your time to learn the rules and do the

exercises below. Youwill greatly benefit from it in the following chapters!

Complete the table
Complete the following table to create an overview of slicing in your ownwords:

Slicing syntax What it does

list_name[index]

list_name[start:stop:step]

list_name[:stop:step]

list_name[start::step]

list_name[start:stop]

list_name[negative_index]

list_name[::negative_step]

list_name[::-1]

46

Chapter 6. Traveling around the world

Recap

• To slice one element, we use the rule: list_name[element_position]
• To slicemultiple elements, we use the three-s rule: list_name[start:stop:step], where:

■ We can omit: start when we slice from the first element of a list; stop when we slice to the last

element of a list; and stepwhenwe slice consecutive elements of a list

■ The stop follows theplus one rulewhen slicing from left to right (direct order), and theminus one

rule when slicing from right to left (reverse order)

• The values of element_position, start, stop, and step can be:

■ Positive: when considering elements from left to right (direct order)

■ Negative: when considering elements from right to left (reverse order)

• Negative steps are used to invert lists

Why the plus one rule?

So far, we have learned that each list element is associatedwith an index or position. However,

in Python, each element is actually considered between two positions, as represented in this

figure:

1 2 3 540

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

List representation where each element is in between indices.

Let’s re-consider example 2, where we extracted the cities from "Prague" to "Tokyo":

[3]: 1 print (cities[1:4]) print cities in positions from one
to four

['Prague', 'Cape Town', 'Tokyo']

Using the representation above, we can see that the start is 1 because that is the index that
precedes "Prague", the first element to slice. And the stop is 4 because that is the index that
follows "Tokyo", the last element to slice.

Formanypeople, considering elements in-between indices is pretty straightforward. For other

people, considering that elements have one single index—aswe have done so far—is easier. My

recommendation is to pick one representation and stick to that. In this book, we will continue

to represent list elements with one single index.

47

Part 2. Introduction to lists and if/else constructs

Let’s code!

1. Fruits and veggies. Given the following list:

fruits_and_veggies = ["peppers", "apricots", "carrots", "apples", "zucchini",
"grapes", "cabbage", "oranges", "asparagus", "pears"]

Use slicing to extract:

a. The produce between apples and grapes (included)

b. All the vegetables

c. All the fruits

d. The vegetables between carrots and asparagus (included)

e. The fruits between apples and oranges (included)

2. Clothes, stationery, and electronics. Given the following list:

objects = ["mobile", "t_shirt", "pencil", "laptop", "hat", "ruler", "tv", "pants",
"pen"]

Use slicing to extract:

a. All the clothes

b. All the stationery

c. All the electronics

d. The second and the last stationery items

e. The first and the last electronics items

f. The first and the second clothing items

3. Interior design. Given the following list: interior_design = ["sofa", "curtain", "lamp",
"table", "carpet", "plant", "armchair", "blanket", "vase"]

Use slicing to extract the following elements in direct order (from left to right), once using positive

indices and once using negative indices:

a. All furniture

b. All textiles

c. All decorative elements

d. The pieces composed of 5 letters (count them by hand, no coding required)

4. Botanic garden. Given the following list:

botanic_garden = ["tulip", "pine", "poppy", "palm", "rose", "oak", "daisy",
"eucalyptus"]

Use slicing to extract the following elements, once in direct order (from left to right) and once in

inverse order (from right to left):

a. All flowers

b. All trees

c. All flowers and trees starting with p (find them by hand, no coding required)

d. "pine", "rose", and "eucalyptus"
e. All flowers and trees

48

Chapter 6. Traveling around the world

5. Travel agency. You are the owner of a travel agency and these are the destinations you offer:

destinations = ["Boston", "Madrid", "Shanghai", "Cairo", "Mexico City", "Copenhagen",
"Seoul", "Casablanca", "Lima", "Vienna", "Bangkok", "Nairobi", "Buenos Aires",
"Athens", "Manila", "Cape Town"]

You also have a list containing additional destinations youwant to offer in the future:

future_destinations = ["Tunis"]

a. A new customer comes in and you ask where he would like to go. He replies: Berlin. You

check whether Berlin is part of the destination list. If Berlin is part of the list, you say that

you sell tickets for Berlin. If Berlin is not part of the destination list, you: (1) tell the customer

that you do not sell tickets for Berlin; (2) tell himwhat European cities are in the destination

list; and (3) add Berlin to the list of future destinations.

b. Because tickets for Berlin are not available, your customer is now thinking about going to

Asia. So you tell him the destinations in Asia. He tells you that he forgot the last two Asian

places youmentioned; so you tell them again. Then, he says he would have enjoyed going to

Hong Kong. But Hong Kong is not an available destination, so you add it to the list of future

destinations.

c. Now you ask your customer if he is interested in going to the American continent, and he

replies: Toronto. You check whether Toronto is part of the list. Similarly to what you did

for Berlin, if Toronto is part of the list, you say that you sell tickets for Toronto. If Toronto

is not part of the destination list, you: (1) tell your customer that you do not sell tickets for

Toronto, (2) tell himwhat cities on the American continent are in the destination list, and (3)

add Toronto to the list of future destinations.

d. The customer is still undecided. You thinkhemightbe interested in a trip toAfrica, so you tell

himall thedestinations inAfrica. Hefinally tells you thathewants togo toCapeTown! Soyou

replaceCapeTownfromthe listofdestinationswithTunis fromthe listof futuredestinations,

and remove Tunis from the future destination list.

e. The customer is finally gone, and you want to create a flyer with all the destinations you of-

fer. To do so, you add the three new future destinations to the list of current destinations (in

what order?), and youprint out thedestinations youoffer for each continent. While doing so,

you notice that Africa only has four destinations. So you add one African destination to the

destination list before printing out the African destinations. And, finally, you close the shop,

go home, and enjoy your evening after a hard day of work!

49

7. Senses, planets, and a house
Changing, adding, and removing list elements using slicing

Now that you know everything about slicing, let’s see how to use it to manipulate lists—that is, how

to change, add, or remove list elements. Download and open Jupyter Notebook number 7 from www.
learnpythonwithjupyter.com and follow along. Similarly to the previous chapter, cover the code

in these pages with a sheet of paper. First, try to guess the commands to execute, and then compare

with the code below. Don’t forget to read the code aloud!

1. Senses
Let’s first learn how to change list elements using slicing and assignment.

• Let’s start with the following list:

[1]: 1 senses = ["eyes", "nose", "ears", "tongue",
"skin"]

senses is assigned eyes, nose, ears,
tongue, skin

2 print (senses) print senses
['eyes', 'nose', 'ears', 'tongue', 'skin']

The listsensescontainsfivestrings: "eyes", "nose", "ears", "tongue", and"skin" (line1), andweprint
it out (line 2).

• Replace "nose"with "smell":

[2]: 1 senses[1] = "smell" senses in position one is assigned
smell

2 print (senses) print senses
['eyes', 'smell', 'ears', 'tongue', 'skin']

To change one list element, we assign the new value to the list sliced in the element’s position. In

this case, the element we want to replace—"nose"—is in position 1. So, we slice the list in position 1,
and we assign the new string "smell" (line 1). Then, we print the list to check whether the change is
correct (line 2).

At this point, you might ask: Why do I have to learn list manipulation using slicing when I already

know how to do it with methods? For at least three reasons! First reason: to reduce the possibility

of errors. The code at line 1 is an alternative to the code we learned in Chapter 5, where we used

threemethods to replace an element, that is:

[]: 1 nose_index = senses.index("nose") nose index is assigned senses dot index
of nose

2 senses.pop(nose_index) senses dot pop nose index
3 senses.insert(nose_index, "smell") senses dot insert at position nose

index smell

Byusingslicing,wereducethenumberofcommands from3to1, andwedonotneedtocreateanextra

variable—nose_index. By writing less code, we minimize the possibility of making errors! Second

reason: slicing makes code writing faster. Imagine you have to replace 4 elements. With slicing,

50

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

Chapter 7. Senses, planets, and a house

you would have to write just 4 lines of code; instead, with list methods, the number of lines required

would be 12! And finally, the third reason: transitioning from list methods to list slicing allows us to

shift fromamore concrete to amoreabstractwayof thinking. As youknow,whenusing listmethods,

we use a coding language that is more similar to a natural language. Method names, in fact, are words

in the English vocabulary, such as remove, insert, etc. Instead, when slicing, we use numbers—which

represent element positions—and thuswe use (numerical) symbols in place ofwords. As you can see,

we are buildingmore andmore the abstract thinking that coding requires. So let’s keep going!

• Replace "tongue" and "skin"with "taste" and "touch":

[3]: 1 senses[3:5] = ["taste", "touch"] senses in positions from three to five
is assigned taste, touch

2 print (senses) print senses
['eyes', 'smell', 'ears', 'taste', 'touch']

To change several elements in a list, first we slice the elements we want to substitute, and then we

assign thema list containing thenewvalues. In this case,wewant to replace twoelements, sowe slice

using the three-s rule. The start is the position of "tongue", which is 3, and the stop is the position of
"skin", which is 4, but it becomes 5becauseof theplus one rule. The step is 1, sowe canomit it. To the
sliced list,weassigna list containing thenewelements,whichare thestrings"taste"and"touch" (line
1). Finally, we print the list to make sure that the change occurred correctly (line 2).

• Replace "eyes" and "ears"with "sight" and "hearing":

[4]: 1 senses[0:3:2] = ["sight", "hearing"] senses in positions from zero to three
with a step of two is assigned sight,
hearing

2 print (senses) print senses
['sight', 'smell', 'hearing', 'taste', 'touch']

Like in the previous example, we want to replace several elements. So, we begin by slicing the list.

The start is the position of "eyes", which is 0 (and can be omitted). The stop is the position of "ears",
which is 2, but it becomes 3 because of the plus one rule. The two elements are not consecutive, thus
we have to write the step, which is 2. Finally, we assign the list containing the two strings wewant to
add: "sight" and "hearing". Note that the two elementswewant to replace are not consecutive, but
Python takes care of placing "sight" and "hearing" in the right positions (line 1). At the end, we print
the final list to check the changes wemade (line 2).

2. Planets
To add new elements to a list, we can use slicing combinedwith list concatenation and assignment.

How? Let’s have a look at the following examples!

51

Part 2. Introduction to lists and if/else constructs

• Let’s start with the following list:

[5]: 1 planets = ["Mercury", "Mars", "Earth", "Neptune"] planets is assigned Mercury,
Mars, Earth, Neptune

2 print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune']

We begin with the list planets, which contains four strings: "Mercury", "Mars", "Earth", and
"Neptune" (line 1), andwe print it out (line 2).

• Add "Jupiter" at the end of the list:

[6]: 1 planets = planets + ["Jupiter"] planets is assigned planets
concatenated with Jupiter

2 print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune', 'Jupiter']

To add an element at the end of a list, we (1) embed it in a list, (2) concatenate it to the original list,

and (3) assign the result to the original list. It’s less complicated than it sounds! Let’s start from the

far right of line 1. We take the newelement "Jupiter"—which is a string—andwe enclose it in square
brackets to transform it into a list: ["Jupiter"]. Why do we need to change "Jupiter" data type?
Becausewewant to add it to the list planetsusing concatenation. And, as in string concatenation,we
can concatenate only strings with strings; in list concatenation, we can concatenate only lists with

lists. Note that list concatenationworks the sameway as string concatenation. Finally, we assign the

result of the operation to the original list planets to actually change it. It is common to say that we
reassign the result to the original list. This whole operation constitutes an alternative to themethod

.append(). Finally, we print out themodified list to check the correctness of our code (line 2).

Youmayhave realized that in this example there is no slicing! This is because it’s a special case,where

weaddanelement at the endof a list—itwouldbe similar ifwe addedanelement at thebeginningof a

list. We could write planets[0:4] + ["Jupiter"], where planets[0:4] slices all the elements in the
list, but that would be redundant. Let’s see slicing in action in the next two examples!

• Add "Venus" between "Mars" and "Earth":

[7]: 1 planets = planets[0:2] + ["Venus"] + planets[2:5] planets is assigned planets from
zero to two concatenated with
venus concatenated with planets
from two to five

2 print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Jupiter']

In this case, we want to add an element in the middle of a list. To do so, we (1) split the list in two

segments at the position where we want to insert the new element, (2) insert the new element as a

list by concatenating it with the two list segments, and (3) assign the result to the original list. Like

before, it’s easier than it sounds! We want to split the list between "Mars" and "Earth". So, the first
list segment will contain "Mercury" and "Mars". Thus, we slice planets starting from position 0, cor-
responding to "Mercury", and stopping in position 2 for the plus one rule; "Mars" is in position 1. The
second list segmentwill contain"Earth","Neptune", and"Jupiter". So,weslicestarting fromposition

52

Chapter 7. Senses, planets, and a house

2, corresponding to "Earth", and stopping in position 5 for the plus one rule; "Jupiter" is in position
4. In between the two list segments, we concatenate a new list containing the string "Venus"—like
before, we have to change "Venus" from a string to a list. We conclude the operation by assigning

the concatenation result to the original list. As you may have realized, this line is an alternative to

the method .insert() (line 1). Finally, we print out the obtained list to check the correctness of the
operation (line 2).

A nice way to think about the whole procedure is to consider a list like a toy train, where each list

element is a car. When we want to insert a new car, for example a restaurant car, we split the train

into two parts in the position where we want the new car to be. Then, we add the first part of the

train to the left side of the restaurant car, and the second part of the train to the right side of the

restaurant car. Thus, we obtain ourmodified train!

• Add "Uranus" and "Saturn" between "Neptune" and "Jupiter":

[8]: 1 planets = planets[:5] + ["Uranus", "Saturn"] +
planets[5:]

planets is assigned planets from
the beginning of the list to
position five concatenated with
Uranus, Saturn concatenated with
planets from position five to
the end of the list

2 print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Uranus', 'Saturn', 'Jupiter']

To insert several consecutive elements in the middle of a list, we use the same approach as the one

above. We slice the first part of the list planets from the beginning (start omitted) to 5, which corre-
sponds to thepositionof "Neptune"plus1. Then,weconcatenate the twonewelements "Uranus"and
"Saturn" embedded in a list. Finally, we concatenate the remaining part of the list planets, starting
from the position of "Jupiter", which is 5, and stopping at the end of the list (stop omitted). As you’ll
probably notice, when we want to insert several consecutive elements in the middle of a list, we just

embed all the elements in a list (line 1). Finally, we print out the modified list to check whether we

added the new elements correctly (line 2).

Nowa trick! We saw that the start of thefirst list segment and the stopof the second list segment are

omitted. In addition, you may have noticed that the stop of the first list segment coincides with the

start of the second list segment—they are both 5. This is because of the plus one rule applied to the
stop of the first list segment. Therefore, when adding new elements using slicing, we can just count

the stop of the first list segment. That will coincide with the start of the second list segment. The

remaining start and stop can be omitted!

An important note before continuing: in the past three examples, we started analyzing code from

the right side of the assignment symbol. Focusing on that side is quite common because it is where

we define variable changes and operations. Sometimes, we can even start writing code on the right

side of the assignment symbol, and then type the appropriate variable name on the left side. It’s very

common to start analyzing or writing code backwards!

53

Part 2. Introduction to lists and if/else constructs

3. A house
Todelete list elements, we canuse thekeyword del combinedwith list slicing. This is very easy. Let’s

have a look!

• Consider the following list:

[9]: 1 house = ["kitchen", "dining room", "living room",
"bedroom", "bathroom", "garden", "balcony",
"terrace"]

house is assigned kitchen,
dining room, living room,
bedroom, bathroom, garden,
balcony, terrace,

2 print (house) print house
['kitchen', 'dining room', 'living room', 'bedroom',
' bathroom', 'garden','balcony','terrace']

We start with a list called house containing 8 strings (line 1), andwe print it out (line 2).

• Delete "dining room":

[10]: 1 del house[1] del house in position one
2 print (house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'garden', 'balcony','terrace']

Todeleteoneelement in a list, we canuse del followedby the list sliced at thepositionof the element
wewant to delete. In this case, wewant to remove the string "dining room", which is in position 1, so
wewrite the keyword del followed by house[1]. del is a keyword that allows us to delete a variable
or someelements in avariable—in this case, someelements in a list. Like theother keywordswehave

seen so far—for example, if and else—del is written in bold green in Jupyter Notebook. As you may
have realized, using deland slicing is analternative tousing the listmethods .pop()or .remove() (line
1). After removing the element, we print out the list for checking (line 2).

• Delete "garden" and "balcony":

[11]: 1 del house[4:6] del house in positions form four
to six

2 print (house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'terrace']

To delete consecutive elements from a list, we use the same syntax as above: we write the keyword

del followed by the list sliced at the positions of the elements wewant to delete. In this example, the
start is the position of "garden", which is 4, and the stop is the position of "balcony", which is 5, and it
becomes 6 because of the plus one rule (line 1). Thenwe print out the reduced list (line 2).

• Delete "kitchen", "bedroom" and "terrace":

[12]: 1 del house[::2] del house in positions from the
beginning to the end of the list
with a step of two

2 print (house) print house
['living room', ' bathroom']

54

Chapter 7. Senses, planets, and a house

To delete non-consecutive elements in a list, we use the same procedure as the one above: wewrite

the keyword del, followed by the list sliced at the positions of the elements we want to remove. In
this example, the start corresponds to "kitchen", which is the first element of the list, sowe can omit
it. The stop corresponds to "terrace", which is the last element in the list, so we can omit it as well.
And the step is 2becausewant todelete every secondelement (line1). Finally, weprint the remaining
list (line 2).

• Delete "house":

[13]: 1 del house del house
2 print (house) print house

NameError Traceback (most recent call last)
<ipython-input-13-ef0756c89224> in <module>

1 del house
> 2 print (house)

NameError: name 'house' is not defined

Finally, we want to delete the whole house! So we write the keyword del followed by the variable
name house (line 1). This time, we get an error when we print out the list house. It’s a Name Error,
telling us that the variable does not exist anymore (line 2). This is a good error, telling us that we

succeeded in our aim: we deleted thewhole variable house!

Complete the table
In theprevious four chapters, you learnedhowtomanipulate lists usingmethodsor slicing. Complete

the table below to compare the two different techniques:

List operation List methods List slicing

Adding an element at the be-

ginning of a list

Adding an element in the mid-

dle of a list

Adding an element at the end

of a list

Changing an element in a list

Deleting an element in a list

• What is different if youwant to add, change, or delete several elements? Write your answer here:

55

Part 2. Introduction to lists and if/else constructs

Recap

• To change list elements, we can use slicing and assignment

• To add list elements, we can combine slicing, concatenation, and assignment

• To delete list elements, we can use the keyword del and slicing

What is a Jupyter Notebook kernel?

The kernel is the component of Jupyter Notebook that executes code. Whenwe run a cell, the

kernel tells Python to execute computations and save variables. Every Notebook has its own

kernel. And when we open a Notebook, a new kernel is automatically created and is ready to

execute code. Now you may ask: Why do we care about the kernel? Because sometimes we

need to interrupt it or restart it to continue running code. Let’s see what this means.

Interrupting the kernel. Consider two cells containing code. In the first cell, we ask a question

using the function input(). In the second cell, we print the variable containing the answer. We

want to execute the code, so we run the first cell. On the left side, we get the star symbol be-

tween the square brackets, indicating that the code is being executed. But before entering the

answer, we mistakenly run the second cell! Now the second cell also gets the star symbol be-

tween the square brackets on the left side, like this:

[*]: 1 name = input ("What's your name?") name is assigned input what's your
name?

What's your name?

[*]: 1 print (name) print name

In this case, the situation is frozen and no code gets executed! So we need to interrupt the

kernel. To do that, we can either go to the JupyterLab top bar, then toKernel, and then Interrupt

Kernel, or we can go to the Jupyter Notebook top bar and press the interrupt kernel button—

that is, item 7 in the figure below (modified from theGetting ready part):

7 8 91 2 3 4 5 6 10

1 2 3 4 5 6 7 8 9 10

Jupyter Notebook top bar: (1) save Notebook, (2) add cell, (3) cut cell, (4) copy cell, (5) paste cell,

(6) run cell, (7) interrupt kernel, (8) restart kernel, (9) restart kernel and runwhole Notebook,

and (10) define cell as code ormarkdown.

After interrupting the kernel, the star symbols in between square brackets disappear, and we

can run each cell again.

Restarting the kernel. Consider the list house from this chapter. Let’s say that wewant to delete

the element "dining room", as we did in one of the examples above. But, by mistake, we type
the wrong slicing index—that is, 0 instead of 1—deleting "kitchen" in place of "dining room",

56

Chapter 7. Senses, planets, and a house

like this:

[9]: 1 house = ["kitchen", "dining room",
"living room", "bedroom", "bathroom",
"garden", "balcony", "terrace"]

house is assigned kitchen, dining
room, living room, bedroom,
bathroom, garden, balcony, terrace,

[10]: 1 del house[0] del house in position zero
2 print (house) print house
['dining room', 'living room', 'bedroom',
'bathroom', 'garden', 'balcony','terrace']

We want to restore the original variable house and rerun the corrected version of our code—
del house[1]— to obtain the correct result. How do we go back? By restarting the kernel! To

do that, we can either go to the JupyterLab top bar, then Kernel, and then Restart Kernel; or we

can go to the JupyterNotebook top bar and press the curved arrow (item8 in the figure above).

Then, we can rerun the cells of the Notebook. As an alternative, we can restart the kernel and

rerunallNotebookcells atoncebygoing to theJupyterLab topbar, thenKernel, and thenRestart

Kernel and Run all Cells, or to the Jupyter Notebook top bar and pressing the symbol with two

arrow tips (item 9 in the figure above). You may ask: do I really have to restart the kernel ev-

ery time I make a mistake? Not really. In this case, one could just rerun the first cell to bring

the variable house back to its original value, and rerun the second cell with the corrected code.
However, when dealingwithmultiple variables, or if wemake severalmistakes for a single vari-

able, it is good practice to reset the kernel and start from scratch.

Let’s code!

1. Stephanie Shirley. Do you know the story of Stephanie Shirley? Let’s see what she did! Given the

following list:

stefanie_shirley = ["In 1962", "Stephanie Shirley", "founded", "a software company",
"employing", "only women", "working from home"]

Do the following using list slicing:

a. Replace "founded"with "thrived"
b. Remove the element in position 0 (first element)

c. Replace "employing"with "transferred ownership"
d. Add "and over the years" between "thrived" and "a software company"
e. Replace "only women"with "to her staff"
f. Insert "gradually" in position 4 (fifth element)
g. Replace "a software company"with "she"
h. Add "70 millionaires" at the end of the list
i. Remove "Stephanie Shirley"
j. Replace "working from home"with creating"
k. Insert "The business" at the beginning of the list

Then, redo the same using list methods.

57

Part 2. Introduction to lists and if/else constructs

2. Tim Berners-Lee.What did Tim Berners-Lee invent? Let’s find it out! Given the following list:

tim_barnerslee = ["Tim Berners-Lee", "invented", "the World Wide Web", "in 1989",
"at CERN in Geneva", "info.cern.ch", "was", "the address of",
"the world's first website and Web server"]

Do the following using list slicing:

a. Remove "info.cern.ch"
b. Replace "was"with "consists of"
c. Remove the element in position 1 (second element)

d. Add "all over the world" at the end of the list
e. Replace "the world's first website and Web server"with "about 75 million servers"
f. Remove the element in position 0 (first element)

g. Replace "in 1989"with "Nowadays"
h. Remove the element in position 0 (first element)

i. Replace "at CERN in Geneva"with "it is estimated that"
j. Add "the internet" in position 2 (third element)
k. Remove the element in position 4 (fifth element)

Then, redo the same using list methods.

3. Alan Turing. What happened thanks to Alan Turing’s contributions? Let’s discover it! Given the

following list:

alan_turing = ["Turing", "created", "an electromechanical machine", "to crack",
"the Nazi Navy's", "Enigma Code"]

Do the following using list slicing:

a. Replace "the Nazi Navy's"with "shortened the war"
b. Insert "by two years" in position 5 (sixth element)
c. Replace "an electromechanical machine"with "his contribution"
d. Add "saving millions of lives" to the end
e. Replace "created"with "that"
f. Remove "to crack"
g. Replace "Turing"with "It is estimated"
h. Remove the element in position 5 (sixth element)

Then, redo the same using list methods.

58

PART 3
INTRODUCTION TO
THE FOR LOOP
In this part, youwill learn about the for loop, which is one of the two loops in coding—the other is the

while loop. We will learn its syntax and how to use it to search elements in a list, modify a list, and

automatically create new lists. Let’s go!

8. My friends’ favorite dishes
for... in range()

The for loop is one of the most important constructs in coding because it allows us to repeatedly

execute commands. What does this mean and how does it work? Time to open Jupyter Notebook 8

and answer these questions! Read the following example out loud and try to understand it:

• Here are a list of my friends and a list of their favorite dishes:

[]: 1 friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan

2 dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,
tacos, pizza

• These are all my friends:

[]: 1 print ("My friends' names are:") print My friends' names are:
2 print (friends) print friends

• These aremy friends one by one:

[]: 1 for index in range (0,4): for index in range from zero to four
2 print ("index:" + str(index)) print index: concatenated with

string of index
3 print ("friend:" + friends[index]) print friend: concatenated with

friends in position index

• These are all their favorite dishes:

[]: 1 print ("Their favorite dishes are:") print Their favorite dishes are:
2 print (dishes) print dishes

• These are their favorite dishes one by one:

[]: 1 for index in range (0,4): for index in range from zero to four
2 print ("index:" + str(index)) print index: concatenated with

string of index
3 print ("dish:" + dishes[index]) print dish: concatenated with dishes

in position index

• These aremy friends, with their favorite dishes one by one:

[]: 1 for index in range (0,4): for index in range from zero to four
2 print ("My friend " + friends[index] +

"'s favorite dish is " + dishes[index])
print My friend concatenated
with friends in position index
concatenated with 's favorite dish
is concatenated with dishes in
position index

Get some hints about what the code does by completing the next exercise.

61

Part 3. Introduction to the for loop

Match the sentence halves
1. The for loop allows us a. a start and a stop as an argument

2. The variable index b. howmany times commands are repeated

3. In the first loop, the variable index c. to repeat the indented commands

4. The built-in function range() determines d. changes value at each loop

5. The built-in function range() can take e. is assigned the value 0

OLD COLORS

NEW COLOR

Computational thinking and syntax
Let’s start by running the first cell:

[1]: 1 friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan

2 dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,
tacos, pizza

There are two lists—friends and dishes—and each contains four strings.

Let’s run the second cell:

[2]: 1 print ("My friends' names are:") print My friends' names are:
2 print (friends) print friends
My friends' names are:
['Geetha', 'Luca','Daisy','Juhan']

Weprint out the string My friends' names are: (line 1) and the content of the list friends (line 2).

Let’s now run the third cell, which contains the first for loop:

[3]: 1 for index in range (0,4): for index in range from zero to four
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("friend:" + friends[index]) print friend: concatenated with

friends in position index
index: 0
friend: Geetha
index: 1
friend: Luca
index: 2
friend: Daisy
index: 3
friend: Juhan

The code prints the position and the value of each list element by repeating lines 2 and 3 four times.

How does this happen? Let’s start from line 1, which is the header of the for loop. It consists of five

components:

• for: The keyword starting a for loop. Like all keywords, it is bold green in Jupyter Notebook.
• index: A variable that is assigned a different value at each loop iteration (we’ll talkmore about this
in a bit).

• in: Amembership operator, the same that you learned in the construct if...in/else in Chapter 3.

62

Chapter 8. My friends’ favorite dishes

• range(): A built-in Python function. You can recognize this as a function because it is followed

by round brackets and is colored green in Jupyter Notebook—like input() and print(). We’ll talk

more about range() in a bit too.
• : that is, the colon punctuation.

To better understand what this line does, let’s begin from the built-in function range(). It takes two
arguments: 0 and 4. They are two integers that we can call—guess what?—start and stop! So, what
does range() do? Create a separate cell in the notebook, and thenwrite and run the following code:

[4]: 1 list(range (0,4)) list of range from zero to four
[0,1,2,3]

The built-in function range() returns a sequence of integers spanning from the start (included) to

the stop (excluded because of the plus one rule). In this example, the integers go from 0 to 3, and—
guess what again?—they correspond to the indices of the elements of the list friends! Why is there

list()? This is another built-in function that we write here for a proper print out. Don’t worry too
much about it for now. Let’s focus on understanding the for loop!

What dowe dowith the list of integers created by range()? We assign them to the variable index!
At each code repetition—or loop, or iteration—index is subsequently assigned a number created by
range(). That is, in the first loop, index is assigned 0; in the second loop, index is assigned 1; and so
on. We could call the variable index any name—for example, loop_id, iteration_number. However, it is
convention to call it index, so wewill adopt it. Now, what canwe dowith the variable index? At least
two things!

First, we can print index to keep track of which loop is getting executed, like we do at line 2. In

the first loop, index is assigned 0, so we print "index: 0". In the second loop, index is assigned 1,
so we print "index: 1"—and so on. Why is str() here? Because we can concatenate only strings

with strings, and index is an integer! So, we need to change the variable type of index from integer

to string. And to do that, we can use the built-in function str(), which transforms a variable into a

string.

Second, we can use index to automatically slice list elements one by one. As you now know, index
changes at every iteration, and it can be assigned values that go from the beginning of a list—that

is, 0—to the end of a list—in this case 3. Let’s look at line 3 of the cell above. In the first loop, when
index is assigned 0, friends[index] is the same as friends[0]—that is, "Geetha". In the second loop,
when index is assigned 1, friends[index] is the same as friends[1], i.e., "Luca". And so on.

The lines below the header—in this example, lines 2 and 3—are called the body of the for loop. They

are always indented, and there can be as many as wewant. They get executed for a number of times

determined by the sequence of numbers created by the function range().

63

Part 3. Introduction to the for loop

Before moving to the next cell, let’s summarize what the code at cell 3 does. We have to go through

the three lines of code for a total of four times, like this:

• In the first iteration, index is assigned 0 (line 1), so we print index: 0 (line 2), and then friends in
position index—which is 0—and thus friend: Geetha (line 3).

• In the second iteration, index is assigned 1 (line 1), soweprint index: 1 (line 2), and then friends in
position index—which is 1—and therefore friend: Luca (line 3).

• In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then friends in
position index—which is 2—and therefore friend: Daisy (line 3).

• In the fourth iteration, index is assigned 3 (line 1), sowe print index: 3 (line 2), and then friends in
position index—which is 3—and therefore friend: Juhan (line 3).

Being aware of what happens at each loop is fundamental to make sure that our code does what we

expect. Any time you are uncertain about what is happening in a for loop, think about your code line

by line and iteration by iteration, like we did right above. If the code is particularly complicated, you

can also create a table, where you can keep track of each line at each iteration, like this:

Loop for index in range(0,4): print("index:"+str(index)) print("friend:"+friends[index])

First index = 0 index: 0 friend: friends[0]→Geetha

Second index = 1 index: 1 friend: friends[1]→ Luca

Third index = 2 index: 2 friend: friends[2]→Daisy

Fourth index = 3 index: 3 friend: friends[3]→ Juhan

Before going to the next cell, let’s define the for loop:

A for loop is the repetition of a group of commands

for a determined number of times.

This definition summarizes the twomain features of a for loop.

1. We execute the lines of code that are in the body of the for loop several times

2. The number of times is known and is determined by a sequence of numbers created by the

built-in function range()

Let’s continue with cell 4:

[4]: 1 print ("Their favorite dishes are:") print Their favorite dishes are:
2 print (dishes) print dishes
Their favorite dishes are:
['sushi', 'burgers', 'tacos', 'pizza']

Weprintout thestringTheir favorite dishes are: (line1)and thecontentof the listdishes (line2).

64

Chapter 8. My friends’ favorite dishes

Let’s run cell 5, which contains another for loop:

[5]: 1 for index in range (0,4): for index in range from 0 to 4
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("dish:" + dishes[index]) print dish: concatenated with dishes

in position index
index: 0
friend: sushi
index: 1
friend: burgers
index: 2
friend: tacos
index: 3
friend: pizza

The header is the same as that of the for loop wemet at cell 3, including the start and the stop of the

built-in function range(). Also, line 2—where we print the index value at each iteration—is the same.
However, at line 3we print out the dish names one by one. Once again, let’s go through the code one

iteration at a time:

• In the first iteration, index is assigned 0 (line 1), so we print index: 0 (line 2), and then we print
dishes in position index—which is 0—and thus dish: sushi (line 3)

• In the second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then we print
dishes in position index—which is 1—and thus burgers (line 3)

• In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then we print
dishes in position index—which is 2—and thus tacos (line 3)

• In the fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then we print
dishes in position index—which is 3—and thus pizza (line 3).

Finally, let’s run the last cell:

[6]: 1 for index in range (0,4): for index in range from zero to four
2 print ("My friend " + friends[index] +

"'s favorite dish is " + dishes[index])
print My friend concatenated
with friends in position index
concatenated with 's favorite dish
is concatenated with dishes in
position index

My friend Geetha's favorite dish is sushi
My friend Luca's favorite dish is burgers
My friend Daisy's favorite dish is tacos
My friend Juhan's favorite dish is pizza

Onceagain, there is a for loop. Theheader is the sameas that in the twopreviousexamples: wecreate

a sequence of integers that go from 0 to 3, and we assign them to the variable index, one by one at
each iteration (line 1). Just one note: beyond the start and the stop, the built-in function range() can
also take a step as an argument, like so:

[6]: 1 for index in range (0,4,1): for index in range from zero to four
with a step of one

As for the start and the stop, the step also works exactly the same way as it does in slicing (Chapter

6). In these examples, we omitted the step because it is 1—that is, we take all the elements of the list.

65

Part 3. Introduction to the for loop

Youwill play with different step values in the coding exercises at the end of this chapter.

Finally, the body of the for loop is constituted of one line of code, wherewe print out a sentence com-

posed of four parts, concatenated to each other. The first and the third parts are two strings—"My
friend " and "'s favorite dish is ". The second and the fourth parts are the elements of the lists
friends and dishes sliced at position index (line 2). As you’ll notice, we can use index to simultane-

ously slice several lists of the same length at the same positionwithin one for loop.

Fill in the gaps
Complete the following sentences to summarize the for loop syntax and functionality in your own

words:

1. A for loop is .

2. A for loop header is .

3. A for loop body is .

4. for is a and is colored in Jupyter Notebook.

5. index is a and is colored in JupyterNotebook.

It is assigned .

6. range() is a and is colored in Jupyter Note-

book. It can take three arguments: , , and

. It returns .

7. An iteration or loop is .

Recap

• A for loop is the repetition of commands for a defined number of times

• When the for loop is used to slice a list, the number of times coincides with the list length

• The generic syntax of a for loop header is: for index in range(start, stop, step):
• The body of a for loop is indented and can contain as many lines of code as needed

• range() is a built-in Python function that creates a sequence of integers spanning from the start

(included) to the stop (excluded)

• str() is a built-in Python function that converts a variable into a string

Dealing with IndexError and IndentationError

Whenexecutinga for loop,wemightencounter twoerrors: indexerrorsand indentationerrors.

Let’s see why they happen and how to fix them!

66

Chapter 8. My friends’ favorite dishes

Index error. Let’s modify the example in cell 3 by changing the stop to 5 (instead of 4). Whenwe

run the cell, we get the following error.

[3]: 1 for index in range (0,5): for index in range from zero
to five

2 print("index:" + str(index)) print index: concatenated
with string of index

3 print("friend:" + friends[index]) print friend: concatenated
with friends in position
index

index: 0
friend: Geetha
index: 1
friend: Luca
index: 2
friend: Daisy
index: 3
friend: Juhan
index: 4

IndexError Traceback (most recent call last)
<ipython-input-13-ef0756c89224> in <module>

1 for index in range (0,5):
2 print ("index: " + str(index))

> 3 print ("friend: " + friends[index])
IndexError: list index out of range

Let’s decipher the error message. As you know from Chapter 2, we start reading from the last

line, which informs us about the type of error: IndexError: list index out of range. This
means that we are trying to slice a list in a position that does not exist. Where do we do this?

Let’s look for the arrow. It points to line 3, where we slice friends in position index. What’s

the value of index? From the last line of the printouts, we can see that index is 4. Thus, we are
trying to slice the list friends in position 4, which does not exist. Fixing this error is easy: we
just correct the stop in range() to 4.

IndentationError. The indentation error is very easy to recognize and fix. Let’s look into this

example:

[3]: 1 for index in range (0,4): for index in range from zero
to four

2 print("index:" + str(index)) print index: concatenated
with string of index

File"/var/ipykernel_54813/8597.py" , line 2
print ("index: " + str(index))
̂
IndentationError: expected an indented block

Again,we start reading fromthe last lineof theerrormessage,which says: IndentationError:
expected an indented block. This means that we did not indent a line of code. Where?

The message says line 2 at the end of its first line. The fix is straightforward: we

just indent line 2. A last note: Jupyter Notebook (and other editors) help us avoid

the indentation error by positioning the cursor correctly when we press enter after a

67

Part 3. Introduction to the for loop

line terminatedbya colon (:)—that is, after a for loopheader, an if or else condition, awhile loop
header (Chapter 17), a function definition (Chapter 28), or a class definition (Chapter 35).

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Capitals of the world. Write two lists, one containing countries of the world and the other

containing their capital cities. First, print out all the countries as a list and all the countries

one by one. Then, print out all the cities as a list and all the cities one by one. Finally, print out

each country with its capital.

b. Animals of the world.Write two lists, one containing animals of the world and one containing

the continents (or countries) where they live. First, print out all the animals as a list and all

the animals one by one. Then, print out all the continents as a list and all the continents one

by one. Finally, print out each animal with the continent where it lives.

2. Mountains and rivers. Given the following list:

mountains_rivers = ["everest", "mississipi", "yosemite", "nile", "mont blanc",
"amazon"]

Print:

a. All elements as a list

b. All elements one by one using a for loop

c. Mountains using slicing

d. Mountains one by one using a for loop (tip: remember that range() can have three argu-
ments: start, stop, step)

e. Rivers using slicing

f. Rivers one by one using a for loop (what start do you use?)

g. All elements in reverse order using slicing

h. All elements in reverse order, one by one, using a for loop (what start, stop, and step do you

use?)

3. Wild animals. Given the following list:

wild_animals = ["eagle", "bear", "parrot", "tiger", "pelican", "coyote"]

Print:

a. All animals as a list

b. All animals one by one using a for loop

c. Mammals using slicing

d. Mammals one by one using a for loop

e. Birds using slicing

f. Birds one by one using a for loop (what start do you use?)

g. All animals in reverse order using slicing

h. All animals, one by one, in reverse order using a for loop

68

9. At the zoo
For loop with if... ==... / else...

Can we combine for loops and if/else constructs? Yes! How? Open Jupyter Notebook 9 and follow

along. Read the following example aloud, and try to understand how it works:

• You are at the zoo and youwrite down a list of some animals you see:

[]: 1 animals = ["giraffe", "penguin",
"dolphin"]

animals is assigned giraffe, penguin,
dolphin

2 print (animals) print animals

• Then you print out the animals one by one:

[]: 1 # for each position in the list for each position in the list
2 for i in range (0, len(animals)): for i in range from zero to len of animals
3 print ("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and its position
5 print ("The element in position " +

str(i) + " is " + animals[i])
print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

• You really wanted to see a penguin:

[]: 1 wanted_to_see = "penguin" wanted to see is assigned penguin

• Once home, you tell your friend the animals you saw, specifying which one you really wanted to

see:

[]: 1 # for each position in the list for each position in the list
2 for i in range (0, len(animals)): for i in range from zero to len of animals
3 # if the current animal is

what you really wanted to see
if the current animal is what you really
wanted to see

4 if animals[i] == wanted_to_see: if animals in position i equals wanted to
see

5 # print out that that's the animal
you really wanted to see

print out that that's the animal you
really wanted to see

6 print ("I saw a " + animals[i] +
" and I really wanted to see it!")

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

7 else: else:
8 # just print out what you saw just print out what you saw
9 print ("I saw a " + animals[i]) print I saw a concatenated with animals in

position i

What’s happening in this code? Get some hints by completing the following exercise.

69

Part 3. Introduction to the for loop

True or false?
1. We can include a condition in a for loop using an if/else construct T F

2. The built-in function len() returns the number of elements in a list T F

3. The hash symbol # starts a new line of code T F

4. The == symbol checks whether two variables are different T F

Computational thinking and syntax
Let’s start by running the first cell:

[1]: 1 animals = ["giraffe", "penguin",
"dolphin"]

animals is assigned giraffe, penguin,
dolphin

2 print (animals) print animals
['giraffe', 'penguin', 'dolphin']

We consider a list called animals containing three strings: "giraffe", "penguin", and "dolphin" (line
1), andwe print it out (line 2).

Let’s run the second cell:

[2]: 1 # for each position in the list for each position in the list
2 for i in range (0, len(animals)): for i in range from zero to len of animals
3 print ("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and its position
5 print ("The element in position " +

str(i) + " is " + animals[i])
print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

--- Beginning of loop ---
The element in position 0 is giraffe
--- Beginning of loop ---
The element in position 1 is penguin
--- Beginning of loop ---
The element in position 2 is dolphin

Werun the for loop three times, and each timeweprint out the lines 3 and5. Let’s dig into the code to

understand itbetter! Theheaderof the for loopat line2contains twochanges fromthesyntaxwesaw

in the previous chapter. First, we use the abbreviation i for the variable index. Shortening names of
frequentlyusedvariables is common incodingbecause it reduces theamountof typing required. Some

abbreviations become conventions—like in this case—so, from this point on we will use i. Second,
instead of an integer, we use len(animals) as the stop in the built-in function range(). If we used
an integer, then the stop would be 3, because the last element—"dolphin"—is in position 2, to which
we add 1 for the plus one rule. But what if we added another element to the list? We would have

to remember to modify the stop from 3 to 4. As you can imagine, this practice is very prone to error,
as it’s easy to forget to update the stop or miscount the last element position. Therefore, we do not

want to hard-code the stop—that is, to explicitly write its value. We want to make it dependent on

the variablewe are dealing with so that we do not have to take care of possible variations. To do so,

we use len(), which is a built-in function that returns the length of a variable—that is, 3 for the list
animals. We can use this trick because the length of a list is always one unit more than the index of

70

Chapter 9. At the zoo

the last element; therefore, it coincides with the stop. From this point on, we will not need to count

to find the stop—len()will do it for us!

Let’s analyze the body of the for loop. At line 3, we print a string stating that we are at the beginning

of a loop. It is meant to be visually different to make the printouts of each iteration easy to identify.

Beyond Beginning of loop, we could use sentences like New iteration, New loop, etc. To increase the

visibility, we can also use symbols before and/or after the text—such as dashes (---) in this example.
Alternatives can be arrows (-->), tildes (~~~), or any other character on the keyboard. At line 5, we
print out each element and its position in a sentence composed of four parts concatenated to each

other. The first and the third parts—"The element in position " and " is "—are two hard-coded
strings. The secondelement is the indexof thecurrent loop. It’s an integer, soweuse thebuilt-in func-

tion str() to convert it into a string. Finally, the last element (animals[i]) is a string, containing a list
element sliced in a different position i at each iteration—that is, "giraffe", "penguin", or "dolphin".

Finally, lines 1 and 4 start with the hash symbol (#) and are followed by text. These lines are called

comments. What are they? Let’s give a definition:

Comments are code descriptions or explanations.

Comments are a fundamental component of coding. They can contain descriptions of the code, or

explanations about why we made a certain coding choice, or any other information that is relevant

to understand the code they refer to. Comments are in light green in JupyterNotebook, and they are

above and alignedwith the line/s they explain. For example, the comment at line 4 refers to the code

at line 5, so it is indented and aligned with line 5. You might wonder why we write comments. For at

least two reasons. First reason: tomake code readable for us and others. When reading old code,we

rarely rememberwhywewrotewhatwewrote—yes, even ifwewrote itourselves! Similarly,whenwe

read somebodyelse’s code, it is oftenhard tounderstandwhat theydid andwhy, if the code is notwell

commented. Second reason: to keep track of whatwe are doing. Whenwriting code, we sometimes

concentrate on small details and lose the big picture. In these cases, we can end up asking ourselves:

why am I writing this again? Using comments to outline code can help us keep track of the steps we

have to implement—that is, to write. Finally, how do we write useful comments? That’s simple: use

precise language. Writing # here is a for loop does not add any information to code because a
loop is clearly visible. It is moremeaningful to describe what the for loop does andwhy; for example,

using a for loop to browse a list and print out its elements one by one. Also, don’t take
any line of code for granted. It’s really so easy to forget why we wrote that line of code that way! In

general, remember that comments arewritten for humanbeings, not for Python. As amatter of fact,

Python skips comments when it reads our code. Try to add an hash front of a line of code yourself:

Python is not going to execute it!

Let’s run the next cell:

[3]: 1 wanted_to_see = "penguin" wanted to see is assigned penguin

We create a variable called wanted_to_see to which we assign the string "penguin".

71

Part 3. Introduction to the for loop

Let’s run the last cell:

[4]: 1 # for each position in the list for each position in the list
2 for i in range (0, len(animals)): for i in range from zero to len of animals
3 # if the current animal is

what you really wanted to see
if the current animal is what you really
wanted to see

4 if animals[i] == wanted_to_see: if animals in position i equals wanted to
see

5 # print out that that's the animal
you really wanted to see

print out that that's the animal you
really wanted to see

6 print ("I saw a " + animals[i] +
" and I really wanted to see it!")

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

7 else: else:
8 # just print out that you saw it just print out that you saw it
9 print ("I saw a " + animals[i]) print I saw a concatenated with animals in

position i
I saw a giraffe
I saw a penguin and I really wanted to see it!
I saw a dolphin

Once more, we use the for loop to browse the list elements. But this time, we apply a condition to

each element. Let’s analyze line by line. The header of the for loop is the same as the one in cell

2. Then, at line 4, we start an if/else construct. It is similar to the one we learned in Chapter 3: it’s

composed of an if condition (line 4), a statement (line 6), an else (line 7), and another statement (line

9). However, the condition after the keyword if is different. In Chapter 3, we checked if an element
was in a list by using the membership operator in. In this case, we check if the values assigned to
two variables animals[i] and wanted_to_see are equal. To do so, wewrite (1) the keyword if; (2) the
first variable, that is, animals[i]; (3) the comparison operator ==, and (4) the second variable, that is,
wanted_to_see. The comparison operator == is pronounced equals or is equal to. Note that == is very
different from =. The symbol == is a comparison operator and is used in conditions to check if the

values assigned to two variables are the same. The symbol = is the assignment operator, and it is used
to assign a value to a variable.

Tomake sure that what this code does is clear, let’s go through the for loop step-by-step:

• In the first loop: at line 2, i is assigned 0. At line 4, we check if animals in position i—where i is 0,
so animals[0] is "giraffe"—is equal to the value assigned to the variable wanted_to_see, which is
"penguin". Because "giraffe" is not equal to "penguin", we skip the statement under the if at line
6, and we jump directly to the statement under the else, which is at line 9. There, we print "I saw
a giraffe"

• In the second loop: at line2, i is assigned 1. At line 4,we check again if animals in position i—where
i is 1, so animals[1] is "penguin"—is equal to the value assigned to the variable

wanted_to_see. In this case, the values of the two variables animals[i] and wanted_to_see are
equal, soweexecute thestatementunder the if condition (line6),whereweprint"I saw a penguin
and I really wanted to see it!"

• Finally, in the third loop: at line 2, i is assigned 2. At line 4, we check once more if animals in po-
sition i—where i is 2, thus animals[2] is "dolphin"—is equal to the value assigned to the variable
wanted_to_see, which is "penguin". Because "dolphin" is not equal to "penguin", we skip the state-

72

Chapter 9. At the zoo

ment at line 6, and we jump directly to the statement under the else, which is at line 9. There, we

print "I saw a dolphin".

Complete the table
In coding there is a lot of jargon—that is, technical words or expressions that are typically used, but

whosemeaning is not always clear. Have you familiarized yourself with the jargon introduced so far?

Complete the table by writing themeaning of the following expressions:

Expression Meaning

To run a cell

(Chapter 1)

Towrite readable code

(Chapter 3)

The function takes one argument

(Chapter 5)

The function returns an integer

(Chapter 5)

To reassign to a variable

(Chapter 7)

The element is hard-coded

(Chapter 8)

To comment code

(Chapter 9)

To hard-code

(Chapter 9)

To implement code

(Chapter 9)

Recap

• In a for loop, the variable index is commonly abbreviated with i
• The built-in function len() returns the length of a variable
• We can use the if/else construct in a for loop

• We can use the comparison operator == (equals or is equal to) in an if condition
• Comments start with the hash symbol #, and they are descriptions or explanations

73

Part 3. Introduction to the for loop

Dealing with TypeError

Typeerror is commonwhenwe try to concatenate variables of different types. Let’s look at this

example, modified from cell 2 in this chapter:

[2]: 1 # for each position in the list for each position in
the list

2 for i in range (0, len(animals)): for i in range from
zero to len of animals

3 print ("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and

its position
5 print ("The element in position " +

i + " is " + animals[i])
print the element in
position concatenated
with i concatenated
with is concatenated
with animals in
position i

--- Beginning of loop ---

TypeError Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in <module>

3 print ("-- Beginning of loop --")
4 # print each element and its position

> 5 print ("The element in position " + i +
" is " + animals [i])

TypeError: can only concatenate str (not "int") to str

The last line of the error message says TypeError: can only concatenate str (not "int")
to str. It means that somewhere in our codewe are trying to concatenate an integerwith one
or more strings. Where? The green arrow points to line 5, where there are three concatena-

tions. As mentioned in the text above, the components are "The element in position" and
" is ", which are two hard-coded strings; the list element animals[i]—that is, "giraffe",
"penguin", or "dolphin"—which is a string, too; and the variable i, which is an integer between
0 and 2. So i is the issue! Solving the error is very easy: we just transform i into a string with
the built-in function str(), like this: str(i).

Let’s look at another example, modified fromChapter 7:

[6]: 1 planets = planets + "Jupyter" planets is assigned
planets concatenated
with jupyter

2 print (planets) print planets

TypeError Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in <module>

> 1 planets = planets + "Jupyter"
2 print (planets)

TypeError: can only concatenate list (not "str") to list

This time, the last line of the error message says: TypeError: can only concatenate list
(not "str") with list. We are trying to concatenate a string to a list. Where? The green

arrow points to line 1. Around the concatenation symbol, there are planets—which is a list—

74

Chapter 9. At the zoo

and "Jupyter"—which is a string! Correcting this error is easy: we simply transform

"Jupyter" into a list by embedding it in between square brackets, like this: ["Jupyter"]. When

getting a type error, remember to analyze the type of each variable located in the line of code

where the error occurs. Also, remember that we can only concatenate lists with lists, and

strings with strings!

Let’s code!
Note: Starting from this chapter, write code comments wherever pertinent.

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Sports. Write a list of sports you like, and print them out one by one. What is your favorite

sport? Create a variable for it. Finally, print out all sports one by one, specifying if they are

your favorite sports.

b. Anastronaut’s next destination. Youareanastronaut andyouwritedown the list of theplanets

of the solar system: Mercury,Mars, Venus, Earth,Neptune,Uranus, Saturn, Jupiter. Print out

the planets one by one. Then, create a variable for your next destination. Finally, print out all

the planets, specifying if they are your next destination.

2. Months. Given the following list:

months = ["February", "July", "January", "August", "December", "June"]

Print out the names of winter months using a for loop. Then, print out the names of summer

months using a for loop. Choose a month you like and assign it to a variable. Print out all the

months one by one, specifying if the current month is your favorite. Finally, what alternative way

could you use to check if your favorite month is in the list?

3. Mary K. Keller. Given the following list:

mary_k_keller = ['a nun', 'She was also', 'in Computer Science.',
'to receive a Ph.D.', 'American woman', 'the first', 'was', 'Mary K. Keller']

Print out all the elements in reverse order, first using slicing, and then using a for loop. Then, con-

sider the following variable: name = 'Mary K. Keller'. Check if this variable is in the list in two
ways: first, using the if/else construct; and then, using the if/else construct in a for loop. What are

the differences between the twomethods?

75

10. Where are my gloves?
For loop for searching

When combined with lists, a for loop is typically used for at least three operations: searching ele-

ments, changing elements, and creating new lists, as you will learn in the next three chapters. In this

chapter, we will start with learning how to use the for loop to search elements in a list. Ready? Open

Jupyter Notebook 10 and follow along. Cover the code after each task with a piece of paper, and try

to guess the answer. Then compare and read the explanation. Let’s get started!

• Who doesn’t have amessy drawer? Here is ours! It contains some accessories:

[1]: 1 accessories = ["belt", "hat", "gloves",
"sunglasses", "ring"]

accessories is assigned belt, hat,
gloves, sunglasses, ring

2 print (accessories) print accessories
['belt', 'hat', 'gloves', 'sunglasses', 'ring']

We start with the list accessories composed of 5 strings (line 1), andwe print it out (line 2).

• Print all accessories one by one, aswell as their positions in the list. Use a sentence like The element

x is in position y:

[2]: 1 # for each position in the list for each position in the list
2 for i in range (len(accessories)): for i in range len of accessories
3 # print each element and its position print each element and its position
4 print ("The element " + accessories[i] +

" is in position" + str(i))
print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i

The element belt is in position 0
The element hat is in position 1
The element gloves is in position 2
The element sunglasses is in position 3
The element ring is in position 4

Wewarm up by using a for loop to print each list element and its position, as we learned in Chapters

8 and 9. The syntax of the for loop is the same aswe sawpreviously, with one last simplification in the

header: we omit the start. When the start is 0—that is, the beginning of the list—we don’t need to

write it. Can we also omit the stop when it coincides with the end of the list? Not really: the built-in

function range()would not knowwhere to stop creating consecutive integers (if you need to refresh

yourmemory that range() creates a list of integers, see cell 4 on page 63). Finally, note that we keep
commenting each command to increase code readability.

Now it’s time to look for items in the drawer. How do we do it? To search list elements, we have to

(1) create a for loop to browse all elements of a list and (2) use an if/else construct to check if the

current element has the characteristics wewant, likewe did at cell 4 of Chapter 9. In general, we can

search for elements based on various conditions. In the previous chapters, we searched if elements

are present in a list (Chapter 3) and for elements equal to a given variable (Chapter 9). In this chapter,

we will search for elements with a certain length and in a certain list position. To do that, we will use

76

Chapter 10. Where are my gloves?

the comparison operators. Ready? Let’s go!

1. Print the accessory whose name is composed of 6 characters and its position in the list. Use a

sentence like The element x is in position y and it has n characters:

[3]: 1 # for each position in the list for each position in the list
2 for i in range (len(accessories)): for i in range len of accessories
3 # if the length of the element equals 6 if the length of the element equals

six
4 if len(accessories[i]) == 6: if len of accessories in position i

equals six
5 # print the element, its position,

and its number of characters
print the element, its position, and
its number of characters

6 print ("The element " + accessories[i] +
" is in position" + str(i)) +
" and it has 6 characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has six
characters

The element gloves is in position 2 and it has 6 characters

Wewant to find the list element composed of 6 characters. Asmentioned above, we create a for loop

to browse all elements in the list (line 2), and we write an if/else construct to evaluate if the current

element—that is, accessories[i]—is composed of 6 characters (lines 4 and 6). Howdowe knowhow

many characters a string has? The number of characters coincides with the length of the string;

therefore, we can use the built-in function len(). Thus, in the if condition, we compare the length
of the current element of the list—len(animals[i])—to the number of characters we want—that is,
6. The comparison operator that we use is == (equals or is equal to), which checks if two values are
identical, like you learned in Chapter 9 at cell 4. If the current element satisfies the condition, we

print out the sentence at line 6, likewedo for the element "gloves". What about the other elements?

We do not want to do anything, so we simply omit the else part of the if/else construct. Note the

comments on lines 1,3, and 5.

2. Print the accessories whose names are composed of less than 6 characters:

[3]: 1 # for each position in the list for each position in the list
2 for i in range (len(accessories)): for i in range len of accessories
3 # if the length of the element is less

than 6
if the length of the element is less
than six

4 if len(accessories[i]) < 6: if len of accessories in position i
less than 6

5 # print the element, its position,
and its number of characters

print the element, its position, and
its number of characters

6 print ("The element " + accessories[i] +
" is in position" + str(i)) +
" and it has less than 6 characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has less
than 6 characters

The element belt is in position 0 and it has less than 6 characters
The element hat is in position 1 and it has less than 6 characters
The element ring is in position 4 and it has less than 6 characters

77

Part 3. Introduction to the for loop

The structure of the code is the same as that in example 1. What changes is the comparison operator,

which is < and is pronounced less than (line 4). By using this operator, we check if the length of the

current element is less than 6. For the elements composed of less than 6 characters, we print out the

sentence at line 6—that is, for the strings "belt", "hat", and "ring".

3. Print the accessories whose name is composed ofmore than 6 characters. Also, assign 6 to a vari-

able:

[4]: 1 # defining the threshold defining the threshold
2 n_of_characters = 6 n of characters is assigned six
3 # for each position in the list for each position in the list
4 for i in range (len(accessories)): for i in range len of accessories
5 # if the length of the element is greater

than the threshold
if the length of the element is
greater than the threshold

6 if len(accessories[i]) > n_of_characters: if len of accessories in position i
greater than n of characters

7 # print the element, its position,
and its number of characters

print the element, its position, and
its number of characters

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
" and it has more than " +
str(n_of_characters) + " characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has more
than concatenated with string of
n of characters concatenated with
characters

The element sunglasses is in position 3 and it has more than 6 characters

In this example, we add two novelties. The first is straightforward: we use the comparison operator

>, which is pronounced greater than (line 6). In this case, only one string hasmore than 6 characters—
that is, "sunglasses"—sowe print out line 8 for that element.

The second novelty is the variable n_of_characters (line 2). It is assigned 6—that is, the threshold
length above which we want to print list elements. Why do we create n_of_characters instead of
simply using 6? Because we use it in two lines of code—in the condition (line 6) and in the print (line

8)—and this implies the possibility of errors. What if instead of considering 6 characters, we wanted

to consider 4? We would have to modify the number both at lines 6 and 8, and we could forget to

change in both places. Instead, by using the variable n_of_characters, we change the value in just
one place (line 2). It is good practice to create variables containing values instead of hard-coding

within a block of code. Variables are usually written at the beginning of a block of code so that they

are easy to find, especially when the code is composed of several lines.

4. Print the accessories whose name is composed of a number of characters different from 6:

[6]: 1 # defining the threshold defining the threshold
2 n_of_characters = 6 n of characters is assigned six
3 # for each position in the list for each position in the list
4 for i in range (len(accessories)): for i in range len of accessories

78

Chapter 10. Where are my gloves?

5 # if the length of the element is not equal
to the threshold

if the length of the element is not
equal to the threshold

6 if len(accessories[i]) != n_of_characters: if len of accessories in position i
not equal to n of characters

7 # print the element, its position,
and its number of characters

print the element, its position, and
its number of characters

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
" and it has a number of characters
different from " +
str(n_of_characters))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has a
number of characters different from
concatenated with string of n of
characters

The element belt is in position 0 and it has a number of characters different from 6
The element hat is in position 1 and it has a number of characters different from 6
The element sunglasses is in position 3 and it has a number of characters different from 6
The element ring is in position 4 and it has a number of characters different from 6

The comparison operator for different from is != and is pronounced not equal to (line 6). The structure
of the code is the same as that above: we use the variable n_of_characters to avoid hard coding (line
2); we create a for loop to browse all list elements (line 4); we create an if condition to check what

strings have lengths not equal to the threshold (line 6); and, finally, we print out a sentence for those

elements that satisfy the condition (line 8)—that is, "belt", "hat","sunglasses", and "ring". Before
each command, wewrite a comment to explain what the command does (lines 1,3,5, and 7).

5. Print the accessories whose position is less than or equal to 2:

[6]: 1 # defining the threshold defining the threshold
2 position = 2 position is assigned two
3 # for each position in the list for each position in the list
4 for i in range (len(accessories)): for i in range len of accessories
5 # if the position of the element is less

than of equal to the threshold
if the position of the element is
less than or equal to the threshold

6 if i <= position: if i less than or equal to position
7 # print the element, its position,

and its position characteristic
print the element, its position, and
its position characteristic

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
", which is less than or equal to " +
str(position))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with which is less than
or equal to concatenated with string
of position

The element belt is in position 0, which is less than or equal to 2
The element hat is in position 1, which is less than or equal to 2
The element gloves is in position 2, which is less than or equal to 2

In this example, we introduce two novelties again. The first novelty is the comparison operator <=,
which is pronounced less than or equal to (line 6). What is the difference between the two comparison

operators <= (less than or equal to) and < (less than)? When using <=, we include the threshold—that
is, we consider all the elements whose position is equal to 2 or less. When using <, we exclude the
threshold—that is, we consider only the elements whose position is strictly less than 2.

79

Part 3. Introduction to the for loop

The second novelty is that we want to search for elements based on their position. How do we do it?

First, we create a variable called position to which we assign the threshold—that is, 2 (line 2). Then,
we need to write the comparison. How do we know the position of each element? In a for loop, the

position of the current list element is i! Remember the following from the previous chapters?

• In the first loop, i is assigned 0, thus accessories[i] is accessories[0], which is "belt"
• In the second loop, i is assigned 1, thus accessories[i] is accessories[1], which is "hat"
• In the third loop, i is assigned 2, thus...
Therefore, in the if condition, we compare the current element position i to the threshold position in
thevariableposition (line6). Forall thoseelementswhosepositioni is less thanorequal toposition,
we print line 8—that is, for "belt", "hat", and "gloves".

6. Print the accessories whose position is at least 2:

[6]: 1 # defining the threshold defining the threshold
2 position = 2 position is assigned two
3 # for each position in the list for each position in the list
4 for i in range (len(accessories)): for i in range len of accessories
5 # if the position of the element is greater

than of equal to the threshold
if the position of the element
is greater than or equal to the
threshold

6 if i >= position: if i greater than or equal to
position

7 # print the element, its position,
and its position characteristic

print the element, its position, and
its position characteristic

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
", which is at least " + str(position))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with which is at least
concatenated with string of position

The element gloves is in position 2, which is at least 2
The element sunglasses is in position 3, which is at least 2
The element ring is in position 4, which is at least 2

In this last example, the code structure remains the same, but we use the comparison operator >=,
pronounced greater than or equal to (line 6). Similarly to before, the difference between >= (greater
than or equal to) and > (greater than) is thatwhen using >=, we include the threshold, whereaswhen us-
ing >, we exclude the threshold. In this case, we print the sentence at line 8 for all the elementswhose
position is at least—that is, greater than or equal to—position, which are "gloves", "sunglasses",
and "ring" (line 8).

Finally, a trick to remember the spelling of comparisonoperators composedof two symbols: the sym-

bol = is always in the second position, as you’ll notice for != (example 4), <= (example 5), and >= (ex-
ample 6).

80

Chapter 10. Where are my gloves?

Complete the table
In this chapter, you learned the six comparison operators. Sum up their characteristics in your own

words in the table below:

Comparison

operator

What it does Pronunciation

==

!=

>

>=

<

<=

Insert into the right column
Up to now, you have learned several coding elements: data types, built-in functions, keywords, and

list methods. Do you remember which is which? Insert the following elements into the right column:

string, else, input(), if, .remove(), print(), .index(), len(),
str(), del, list, .append(), range(), for, .insert(), integer, .pop()

Data types Built-in functions Keywords List methods

Recap

• We can use a for loop combinedwith an if/else construct to search for elements in a list

• It is good practice to create variables instead of hard-coded values in a block of code to reduce the

possibility of errors. Variables are usually located at the beginning of a block of code

• In Python, there are six comparison operators: ==, !=, >, >=, <, <=

81

Part 3. Introduction to the for loop

Let’s use keyboard shortcuts!

While coding, it can be very practical to use keyboard shortcuts to minimize typing interrup-

tions. Although it might sound like a bit of an exaggeration, using the mouse can really be

distracting at times because it slows down the typing rhythm and interrupts the writing flow.

Shortcuts, on the other hand, allow us to never leave the keyboard! They are combinations

of keys pressed simultaneously that can perform various operations. Let’s have a look at the

most commonones. In the followingexamples,wewill use thekeys thatarecolored in thefigure

below.

Q W E R T Y I O PU

A S D F G H K LJ

Z X C V B N M

~
`

!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

+
=

)
0

_
-

{
[

}
]

|
\

:
;

"
'

<
,

>
.

?
/

tab

caps lock

shift shift

return
enter

delete
backspace

control
command

control
command

Example of keyboard. The colored keys are commonly used for shortcuts.

In the following shortcut combinations, control/commandmeans that youwill have topress they

key control if you are using a Windows operating system, or the key command if you are using

a MacOS operating system (that is, one of the red keys in the figure above). In addition, the

symbol +means that you have to press the listed keys simultaneously. What shortcuts do you

know among the following ones?

• control/command + A (red key + pink key): selects all the lines of code in a cell—the letter A

stands for all

• control/command + X (red key + grey key): cuts selected lines of code

• control/command + C (red key + yellow key): copies selected lines of code

• control/command + V (red key + purple key): pastes selected lines of code

• control/command + / (red key + orange key): adds a # in front of the selected lines of code—

that is, it comments themout. If the key combination is re-pressed, the # is removed, and the

code is un-commented

• tab (green key): indents the selected lines of code—that is, it moves the lines four spaces to-

wards right

• shift + tab (blue key + green key): outdents the selected lines of code—that is, it moves the

lines four spaces towards the left

Note that these shortcuts can be used for several lines of code at once, thus speeding up the

writing. Togetherwith learning to typewith ten fingers (see the inmore depth session in Chap-

ter 1), using shortcuts is an efficient way to write code faster andwithout interruptions!

82

Chapter 10. Where are my gloves?

Let’s code!

1. Seasons. Given the following list:

seasons = ["spring", "summer", "fall", "winter"]

Print:

a. All seasons whose names are composed of at least 5 characters

b. All seasonswhosenamesare composedof anumberof characters that is equal toor less than

4

c. All seasons whose position is less than 2

d. All seasons whose position is at least 2

2. Word search. You are working for a magazine and you have just created a new word search game

for your readers. Here are the words hidden in the game:

words = ["cards", "park", "pets", "football", "golf", "crosswords", "toys",
"exercise", "hobbies", "riding", "biking", "games", "reading", "movies",
"walking", "concerts"]

After the grid is completed:

a. Createavariable called title containing thenumberofwords tofind, and thenprint it out (e.g.,

Word search with 16 words)

b. Findwords composedof5 letters. More specifically, print out a title,whichhas to contain the

number of letters of this word group, and the words

c. Are there words with less than 5 characters? If so, for each word, print out a sentence con-

taining the word itself, its position in the list, and its number of characters

d. Similarly, are there words with more than 8 characters? If so, for each word, print out a sen-

tence containing the word itself, its position in the list, and its number of characters

e. What are the words in the second part of the list that have a number of characters different

than 7? What’s their position? And their number of characters?

f. Finally, what are the words in the first fourth of the list that are composed of 4 characters?

What’s their position?

You can download the word search game for this exercise solution on the community website!

3. Spelling competition. Here are somewords of the categorymusculoskeletal (msk) system that you

have tomemorize for the next spelling competition:

msk_words = ["ankle", "patella", "rib", "femur", "sternocleidomastoid", "tendon",
"sternum", "abdominal external oblique", "muscle", "scapula", "radius", "bone",
"vertebra", "ligament", "ulna", "skull", "clavicle"]
a. Howmanywords do you have to learn? Compute it and print it out

b. What is the length of each word? (including spaces if any)

c. Let’s now groupwords based on their length. Here is a list of short words:

short = ["leg"]
Add all words with 6 characters or less to the list and print out the result. Howmany words

are in the list?

83

Part 3. Introduction to the for loop

d. Here is a list of words of intermediate length:

intermediate = ["cartilage"]
Add all words with 7, 8, and 9 characters. Then print out the result. Howmany words are in

the list?

e. And finally, here is a list of long words:

long = ["pectoralis major"]
Add all the remaining words and print out the result. Howmanywords are in the list?

84

11. Cleaning the mailing list
For loop to change list elements

Time to learn how to use the for loop to change list elements! Open JupyterNotebook 11 and follow

along. Don’t forget to pay attention to code pronunciation. Let’s go!

• You are responsible for a newsletter, and you have to send an email to the following addresses:

[]: 1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned
SARAH.BROWN@GMAIL.com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

• For the sake of consistency, youwant all email addresses to be lowercase. So you change them:

[]: 1 # for each position in the list for each position in the list
2 for i in range (len(emails)): for i in range len of emails
3
4 print ("-> Loop: " + str(i)) print -> loop: concatenated with

string of i
5
6 # print element before the change print element before the change
7 print ("Before the change, the element in

position " + str(i) + " is " + emails[i])
print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

8
9 # change element and reassign change element and reassign
10 emails[i] = emails[i].lower() emails in position i is assigned

emails in position i dot lower
11
12 # print element after the change print element after the change
13 print ("After the change, the element in

position " + str(i) + " is " + emails[i])
print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

14
15 # print the modified list print the modified list
16 print ("Now the list is: " + str(emails[i])) print Now the list is: concatenated

with string of emails in position i

What’s new in the code above? Get some hints by completing the following exercise.

True or false?
1. To change a list element, we need to reassign after the change T F

2. Themethod .lower() is a list method T F

3. Themethod .lower() changes a string to uppercase T F

4. Comments and empty lines make codemore readable T F

85

Part 3. Introduction to the for loop

Computational thinking and syntax
Let’s run the first cell:

[1]: 1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned
SARAH.BROWN@GMAIL.com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

We consider a list composed of three strings, each corresponding to an email address (line 1).

Let’s run the second cell:

[2]: 1 # for each position in the list for each position in the list
2 for i in range (len(emails)): for i in range to len of emails
3
4 print ("-> Loop: " + str(i)) print -> loop: concatenated with

string of i
5
6 # print element before the change print element before the change
7 print ("Before the change, the element in

position " + str(i) + " is " + emails[i]
print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

8
9 # change element and reassign change element and reassign
10 emails[i] = emails[i].lower() emails in position i is assigned

emails in position i dot lower
11
12 # print element after the change print element after the change
13 print ("After the change, the element in

position " + str(i) + " is " + emails[i]
print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

14
15 # print the modified list print the modified list
16 print ("Now the list is: " + str(emails)) print Now the list is: concatenated

with string of emails
-> Loop: 0
Before the change, the element in position 0 is: SARAH.BROWN@GMAIL.com
After the change, the element in position 0 is: sarah.brown@gmail.com
-> Loop: 1
Before the change, the element in position 0 is: Pablo.Hernandez@live.com
After the change, the element in position 0 is: pablo.hernandez@live.com
-> Loop: 2
Before the change, the element in position 0 is: LI.Min@hotmail.com
After the change, the element in position 0 is: li.min@hotmail.com
Now the list is: ['sarah.brown@gmail.com', 'pablo.hernandez@live.com',
'li.min@hotmail.com']

We use a for loop to browse all the elements in the list (line 2). Within the for loop, there are four

commands. Let’s have a look at them one by one.

At line3,weprint a title for each iterationof the for loop, aswe learnedat cell 2 ofChapter9. The title

is composed of a symbol (i.e., ->) and the number of the current loop—represented by the variable
i. The symbol makes the title easy to visually identify, and the loop number favors checking what

86

Chapter 11. Cleaning the mailing list

happens at each specific iteration.

At line 5, we print the current element (emails[i]) before the change, as it is in the list. This will be
convenient for comparing the current element before and after the change.

At line 7, we change the current element. How dowe do it? We take the current element emails[i],
andwe change it to lowercase using the stringmethod .lower(). Youmight remember thatmethods
are functions forspecificdata types, theyarecoloredblue inJupyterNotebook, andtheir syntax is: (1)

variable name, (2) dot, (3) method name, and (4) round brackets, in which there can be an argument

(see page 32). How do we know that .lower() is a string method? Because emails[i] is a string!
Python has at least four methods to change character cases:

• .lower() to change all characters of a string to lowercase
• .upper() to change all characters of a string to uppercase
• .title() to change the first character of a string to uppercase and all the remaining characters to
lowercase

• .capitalize() to change the first character of each word in a string to uppercase, and all the re-
maining characters to lowercase

Finally, to actually change a list element, we need to re-assign the changed element to itself. In other

words, weneed tooverwrite the current elementwith its newversion. If we donot do that, then the

list element will remain unchanged.

At line 9, we print out a sentence containing the modified element to check that the change actually

occurred. For a double check, we can also compare this sentence with the sentence containing the

element before the change, which we printed at line 5.

At line 10, we print out the new list. We need to transform the list emails to a string because of the
concatenation. Thus, we use the built-in function str(), like we do for integers.

Finally, we use two techniques to increase code readability. First, we add comments before eachma-

jor command to explain what the code does (lines 1, 6, 9, 12, and 15). Second, we add empty lines

to visually separate units of thought corresponding to one or more commands, like we would do for

paragraphs in a text (lines 3, 5, 8, 11, and 14).

Match the code
Given the following string:

greeting = "hElLo, How arE YoU?"

Connect each commandwith the correct output:

1. print(greeting.lower()) a. 'HELLO, HOW ARE YOU?'
2. print(greeting.upper()) b. 'Hello, how are you?'
3. print(greeting.title()) c. 'hello, how are you?'
4. print(greeting.capitalize()) d. 'Hello, How Are You?'

OLD COLORS

NEW COLOR

87

Part 3. Introduction to the for loop

Recap

• To change list elements, we always need to reassign the changed element to itself

• Stringmethods to change cases are: .lower(), .upper(), .title(), and .capitalize().

In what list am I changing the element?

Sometimes, we have to change a list element before adding it to an existing list. This can create

confusion aboutwhere to change the list element. Let’s consider this example:

• Given the following list:

[1]: 1 sports = ["diving", "hiking"] sports is assigned diving, hiking

• Add themountain sport to the following list, making sure the string is uppercase:

[2]: 1 mountain_sports = ["CLIMBING"] mountain_sports is assigned
CLIMBING

Wewant to take the string "hiking" from the list sports, transform it into "HIKING", and add it
to the list mountain_sports. Where do we change the string to uppercase? Let’s have a look at

these two cases.

Case 1: Changing the element both in the original list and in the new list.

Consider the following code:

[3]: 1 sports[1] = sports[1].upper() sports in position 1 is assigned
sports in position 1 dot upper

2 mountain_sports.append(sports[1]) mountain_sports dot append sports
in position 1

3 print(sports) print sports
4 print(mountain_sports) print mountain_sports
['diving', 'HIKING']
['CLIMBING', 'HIKING']

In this example, we first change the element in position 1 to uppercase (line 1), and then we
append the changed element to the list mountain_sports (line 2). When we print out the two

lists (lines 3 and 4), we see that the element "HIKING" is uppercase in both lists. As you can
imagine, changing the element in the original list is not the best option because wemight need

the original list sports for further computations. How dowemake "hiking" uppercase only in
mountain_sports? Let’s have a look at the next example.

88

Chapter 11. Cleaning the mailing list

Case 2: Changing the element only in the new list.

Consider the following code:

[3]: 1 current_sport = sports[1].upper() current_sport is assigned sports in
position 1 dot upper

2 mountain_sports.append(current_sport) mountain_sports dot append
current_sport

3 print(sports) print sports
4 print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']

In this example, we assign the transformed element—that is, 'HIKING', created with the com-
mand sports[1].upper()—to a new variable. This new variable is current_sport(line 1). Then,
we append the variable current_sport to the list mountain_sports (line 2). When we print out

both lists (lines 3 and 4), we see that "HIKING" is only in the list mountain_sports. We can call

current_sport an intermediary, auxiliary, or temporary variable. Its role is to temporarily

store a value that we will use in subsequent code. Although they are very convenient, tem-

porary variables are generally not recommended because they occupy computermemory. Can

we avoid using current_sport? Yes, let’s have a look at this last example:

[3]: 1 mountain_sports.append(sports[1].upper()) mountain_sports dot append sports
in position 1 dot upper()

2 print(sports) print sports
3 print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']

In this final example, there is a nested command, which is a command containing one or

more commands, like in a Russian doll (line 1). To break down nested commands, we usually

start from the inner command and move outwards. In this example, the inner command is

sports[1].upper(), wherewemodify thestring'hiking' tobeuppercase. Theouter command
is mountain_sports.append(), where we add the modified element—that is, 'HIKING'—to the
list. As you can see, the inner command is what we assigned to the variable current_sport in
the previous example. Therefore, we can avoid a temporary variable by directly substituting its

content in a nested command. Finally, when we print out both lists (lines 2 and 3), we see that

we changed "hiking" to uppercase only in the list mountain_sports.

Nested commands are a convenient way to write compact code. Howmany commands canwe

nest into each other? Theoretically, as many as we want! In practice, we want to keep nested

commands to aminimum for a good balance between code efficiency and code readability.

89

Part 3. Introduction to the for loop

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Editing an article. You work at a newspaper, and you have to edit a paper that has plenty of

acronyms:

acronyms = ["asap", "faq", "fyi", "diy"]
All the acronyms are lowercase, so you change them to uppercase.

b. Name tags. You are organizing an event, and you have the following list of names:

names = ["JOHN", "geetha", "xiao", "LAURA"]
Youwant to print out nice name tags, so you capitalize all names.

2. Colors. Given the following list:

colors = ["yellow", "beige", "green", "red", "ultramarine", "coral", "lavender",
"silver", "cyan", "blue", "black", "magenta", "gold", "pink", "scarlet", "brown"]
a. Howmany colors are there? Compute it!

b. Starting from the second element (position 1), change every third word to uppercase

c. Starting from the third element (position 2), capitalize every third word

d. Addall the colorsof thefirst half of the list colors to the following list usinga for loop,making
sure they are lowercase:

some_colors = ["white"]
Howmany colors are there in some_colors now?

e. Add all the colors of the second half of the list colors to the following list using slicing:
more_colors = ["purple"]
Howmany colors are there in more_colors now? Change them to uppercase.

3. Camping. Given the following list:

camping = ["tent", "adventure", "boots", "hiking", "hat", "nature", "path", "lake",
"mountain_sports", "fire", "water bottle", "fishing", "national park", "beach",
"compass", "forest", "trail", "sleeping bag"]
a. Howmany elements are in there?

b. Get all the words composed of less than (including) 6 letters and add them to the following

list, capitalizing each word:

short_camping = ["Trip"]
c. Slice every secondwordof the list camping starting fromthefirstword (position0) andassign

them to a new variable called some_camping_words
d. Capitalize eachword of the strings in some_camping_words composed of a number of charac-

ters other than 4

e. In some_camping_words, remove the first word (position 0) using a list method
f. In some_camping_words remove "path" using a list method
g. Are there more words in short_camping or some_camping_words? Use an if/else construct to

print out which list has more words, as well as howmanywords they contain.

90

12. What a mess at the bookstore!
For loop to create new lists

Let’s finally learn how to use a for loop to create new lists. Open Jupyter Notebook 12 and follow

along. Oncemore, don’t forget to read the code out loud!

• There were many customers in the shop today, and they mixed up the books whose authors’ last

names start with A and S:

[]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott, Saint-Exupéry
Arendt, Sepulveda, Shakespeare

• So you have to put the books whose authors’ last name starts with A on one shelf, and the books

whose authors’ last name starts with S on another shelf:

[]: 1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range (len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print ("The current author is: " +

authors[i])
print The current author is: concatenated
with authors in position i

10
11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][0] author initial is assigned authors in

position i in position zero
13 print ("The author's initial is: " +

author_initial)
print The author's initial is:
concatenated with author_initial

14
15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " +

str(shelf_a) + "\n")
print The shelf A now contains:
concatenated with str of shelf a
concatenated with backslash n

20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else:
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated

with authors in position i
25 print ("The shelf S now contains: " +

str(shelf_s) + "\n")
print The shelf S now contains:
concatenated with str of shelf s
concatenated with backslash n

26

91

Part 3. Introduction to the for loop

27 # print out the final shelves print out the final shelves
28 print ("The authors on the shelf A are: " +

str(shelf_a)
print The authors on the shelf A are:
concatenated with str of shelf a

29 print ("The authors on the shelf S are: " +
str(shelf_s)

print The authors on the shelf S are:
concatenated with str of shelf s

What are the new concepts in this code? Complete the following exercise to get some hints.

True or false?
1. We initialize an empty list by assigning a pair of square brackets T F

2. We can compose several slicings in one command T F

3. Themethod .append() and list concatenation perform two different actions T F

4. The special character "\n" creates an empty line after a print T F

Computational thinking and syntax
Let’s run the first cell:

[1]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott, Saint-Exupéry
Arendt, Sepulveda, Shakespeare

The list authors is composed of five strings, each of them corresponding to the last name of a book

author. The last names start with either A or S.

Let’s run the second cell. The code is long, so we break it in pieces. Here are lines 1–3:

[2]: 1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list

We create two new lists, shelf_a and shelf_s, to which we assign a pair of empty square brackets.
Technically, we say that we initialize two empty lists—meaning that we create the two lists shelf_a
and shelf_s, but they don’t have any content yet. Why do we do that? We will answer this question

whenwe analyze lines 18 and 24. So, let’s keep going!

Let’s analyze lines 5–9:

5 # for each position in the list for each position in the list
6 for i in range (len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print ("The current author is: " +

authors[i])
print The current author is: concatenated
with authors in position i

Wecreate a for loop to browse all the elements in the list authors (line 6), andweprint out a sentence
to keep track of the list element sliced at each iteration (line 9).

92

Chapter 12. What a mess at the bookstore!

Let’s continue with lines 11–13:

11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][0] author initial is assigned authors in

position i in position zero
13 print ("The author's initial is: " +

author_initial)
print The author's initial is:
concatenated with author_initial

Ateach iteration,weobtain the initial of the current author (line12), andweprint it out (line13). How

doweget an author’s initial? Let’s focus on the right side of the assignment symbol—authors[i][0]—
at line 12. There are two pairs of square brackets, indicating two consecutive slicings. To understand

how this works, let’s substitute the variables with their corresponding values. In the first loop, i is 0;
thus, we get authors[0][0]. authors[0] is "Alcott", and "Alcott"[0] is "A". Similarly, in the second
loop, i is 1, thus we get authors[1][0]. authors[1] is "Saint-Exupéry", and "Saint-Exupéry"[0] is
"S". And so on. With the first pair of square brackets [i], we slice a list obtaining a string, whereas
with the secondpair of square brackets [0], we slice a string obtaining a character. In summary,when
dealing with several consecutive slicings, we execute one at the time, starting from the left. Note

that string slicing works the sameway as list slicing.

Let’s have a look at lines 15–25:

15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " +

str(shelf_a) + "\n")
print The shelf A now contains:
concatenated with str of shelf a
concatenated with backslash n

20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else:
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated

with authors in position i
25 print ("The shelf S now contains: " +

str(shelf_s) + "\n")
print The shelf S now contains:
concatenated with str of shelf s
concatenated with backslash n

We are still in the for loop whose header is at line 6, and we find an if/else construct. If the author’s

initial is equal to A (line 16), we append the current author authors[i] to the list shelf_a (line 18).
Then, we print out the current status of shelf_a (line 19). If the author’s initial is not A, then we go
to the else (line 22), and we concatenate the current author authors[i] to the list shelf_s (line 24).
Note that authors[i] is in between square brackets for type compatibility: authors[i] is a string,
so it must be transformed into a list to be concatenated to the list shelf_s (we learned this at cell 6
of Chapter 7). Finally, we print the current status of shelf_s (line 25). Let’s now look at a few more

details.

At lines 18 and 24, we add an element to a list. In the first case, we use the list method .append(),
whereas in the second case, we use concatenation. The two approaches perform exactly the same

operation and can be used interchangeably.

At the end of the print commands at lines 19 and 24, you’ll notice "\n". What’s that? It’s a special

93

Part 3. Introduction to the for loop

character that creates an empty line after a print. The backslash \ tells Python to consider n not as a
letter of the alphabet, but as a special character meaning new line. Printing an empty line is another

way to increase code readability in a for loop, in addition to printing loop titles (see Chapter 9, cell 2).

Youwill seemore special characters in the “in more depth” section of Chapter 27.

Finally, we can answer the question we asked at lines 1–3: why do we need to initialize shelf_a and
shelf_s as empty lists? Because it would be impossible to add new elements to a list that does not

exist!

As a general rule,when using a for loop to create and fill an empty list, we have to:

1. Initialize an empty list before the for loop

2. Concatenate or append new elements within the for loop

Let’s conclude with lines 27–29:

27 # print out the final shelves print out the final shelves
28 print ("The authors on the shelf A are: " +

str(shelf_a)
print The authors on the shelf A are:
concatenated with str of shelf a

29 print ("The authors on the shelf S are: " +
str(shelf_s)

print The authors on the shelf S are:
concatenated with str of shelf s

Above, we print out the final versions of the created lists—shelf_a (line 28) and shelf_s (line 29). In
both cases, we transform the list to a string using the built-in function str() to concatenate.

Finally, let’s look at the printouts:

The current author is: Alcott
The author's initial is: A
The shelf A now contains: ['Alcott']

The current author is: Saint-Exupéry
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry']

The current author is: Arendt
The author's initial is: A
The shelf A now contains: ['Alcott', 'Arendt']

The current author is: Sepulveda
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda']

The current author is: Shakespeare
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

The authors on the shelf A are: ['Alcott', 'Arendt']
The authors on the shelf S are: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

Each triplet of lines of code is printed during a for loop iteration. The first line is printed at line 9 (e.g.,

The current author is: Alcott), the second line is printed at line 13 (e.g., The author's initial
is: A), andthethird line isprintedat line19 if theauthor’s initial isA (e.g.,The shelf A now contains:

94

Chapter 12. What a mess at the bookstore!

['Alcott']), or at line 25 is the author’s initial is S (e.g., The shelf S now contains:
['Saint-Exupéry'). After each group of 3 lines, there is an empty line because of "\n" at the end of
the print commands at lines 19 and 25. The last two lines containing the final content of shelf_a and
shelf_s come from the prints at lines 28 and 29.

Finally, the codecontains several comments andempty linesbetweenblocksof code to improve read-

ability.

Match the code
Let’s summarize what we learned about for loops! Given the following list:

hot_drinks = ["tea", "coffee", "hot chocolate"]

Connect each commandwith the correct output and the corresponding action:

1. for i in range (len(hot_drinks)):

print (hot_drinks[i])

a. ['TEA', 'coffee',

'hot chocolate']

⋆.create list elements

2. for i in range (len(hot_drinks)):

if hot_drinks[i][0] == "c":

print (hot_drinks[i])

b. tea

coffee

hot chocolate

♣. change list elements

3. for i in range (len(hot_drinks)):

if len(hot_drinks[i]) == 3:

hot_drinks[i] = hot_drinks[i].upper()

print (hot_drinks)

c. ['coffee', 'hot chocolate'] ■.print list elements

one by one

4. long_words = []

for i in range (len(hot_drinks)):

if len(hot_drinks[i]) >= 6:

long_words.append(hot_drinks[i])

print (long_words)

d. coffee ▲. find list elements

Recap

• To create and fill a list in a for loop, we have to: (1) initialize an empty list before the for loop and (2)

fill the list using .append() or list concatenation in the for loop
• String slicing works the sameway as list slicing

• In multiple consecutive slicings, we execute one slicing at a time, starting from the left

• The special character "\n" creates an empty line after a print

95

Part 3. Introduction to the for loop

Append or concatenate. Don’t assign!

When creating a new list within a for loop, a commonmistake is to assign a new element to the

list instead of appending it or concatenating it. Let’s see what this means with the following

example. Here is the same list as the one used earlier in this chapter:

[1]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

Let’s simplify the code by creating only the list containing author last names starting with A. To

show how an error can occur, at line 10 we assign authors[i] to the new list shelf_a, instead
of appending it (or concatenating it). What happens to shelf_a throughout the code?

[2]: 1 # initialize the variable initialize the variable
2 shelf_a = [] shelf a is assigned an empty list
3 # for each position in the list for each position in the list
4 for i in range (len(authors)): for i in range len of authors
5 # get the author's initial get the author's initial
6 author_initial = authors[i][0] author initial is assigned authors

in position i in position zero
7 # if the author's initial is A if the author's initial is A
8 if author_initial == "A": if author_initial equals A
9 # add the author to the shelf a add the author to the shelf a
10 shelf_a = authors[i] shelf a is assigned authors in

position i
11 print ("The shelf A now

"contains: " + str(shelf_a))
print The shelf A now contains:
concatenated with str of shelf a

12 # print out the final shelves print out the final shelves
13 print ("The authors on the shelf A are: "

+ str(shelf_a)
print The authors on the shelf A
are: concatenated with str of shelf
a

The shelf A now contains: Alcott
The shelf A now contains: Arendt
The authors on the shelf A are: Arendt

Let’s go through the for loop and focus on the names starting with A:

• When i is 0 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), sowe assign
authors[i]—that is, "Alcott"—to shelf_a (line 10), andweprint out The shelf A now contains:

Alcott (line 11). With the assignment at line 10, we implicitly transform shelf_a from a list—

which we initialized at line 2—into a string—because we assign it the string "Alcott".
• When i is 2 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), we assign

authors[i]—that is, "Arendt"—toshelf_a (line10), andweprintout: The shelfAnowcontains:
Arendt (line 11). In this case, in the assignment at line 10, we overwrite the value "Alcott"—
which we assigned in the previous loop—with the value "Arendt"; thus, shelf_a remains a
string.

At line 13, we print the final version of shelf_a, which is a string with value "Arendt".

In conclusion, assigning a variable to a list (e.g., shelf_a = authors[i]) changes the type of
the list itself to the variable type (e.g., shelf_a becomes a string). In addition, the value is

96

Chapter 12. What a mess at the bookstore!

overwritten at each loop, and the final value is the one assigned in the last loop. Thus, the cor-

rect way to add elements to a list is either to append—e.g., shelf_a.append(authors[i])—or
concatenate—e.g., shelf_a = shelf_a + [authors[i]].

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Selling electric cars. Youwork at a famous car company, and you have to ship newelectric cars

that have just arrived. Your colleagues plated the cars destined to Spain and to Portugal, but

theymixed them up:

e_cars = ["PT-754J", "ES-096L", "PT-536G", "FR-543H", "PT-653H"]
Separate the two groups of cars according to their destinations.

b. TeachingEnglish verbs. YouareanEnglish teacher for foreignstudents. Someof themhavedif-

ficulties understanding when a present verb is conjugated in the third person singular

(he/she/it), or in other persons (I/you/we/they). So you provide a list of verbs:

english_verbs = ["eat", "drink", "eats", "sleep", "drinks", "sleeps"]
and you help your students separate the verbs between third person and other persons.

2. Desserts. Given the following list:

desserts = ["meringue", "apple pie", "eclair", "rice pudding", "chocolate",
"english pudding", "cake", "icing"]

Get all the initials, change them to uppercase, and concatenate them in a new list. Then invert the

list. What dessert do you get?

3. Guess the jobs. Given the following list:

jobs = ["photog", "bal", "mu", "inve", "ambas", "si", "ler", "stig", "rapher", "ci",
"ator", "ina", "an", "sador"]

Group strings composed of 2, 3, 4, 5, and 6 letters in new lists. What jobs do you get? Make sure

that the first letter of each job is uppercase.

4. Art. Given the following list:

art = ["apor", "refsscu", "atwat", "fetes", "erta", "jtylpt", "aprco", "srap",
"ruolo", "texture", "gitp", "puors"]

Create new lists for each of the following:

• If the string length is 4, then get two letters starting from the second (position 1)

• If the string length is 5, then get the third and fourth letters (positions 2 and 3)

• If the string length is at least 6, then get the last three letters

What art words do you get? Make sure all strings are uppercase!

97

PART 4
NUMBERS AND
ALGORITHMS
In this part, youwill learn how to perform arithmetic operations, play with random numbers, and im-

plement your first algorithms. Ready? Let’s go!

13. Implementing a calculator
Integers, floats, and arithmetic operations

In the previous chapters, you have developed quite a bit of computational thinking, so now you are

ready for numbers, some easy math, and algorithms! There is a general misconception that in order

to be good at coding one has to be very good atmath. However, that’s not necessarily true, as youwill

see in the coming chapters!

In this chapter, youwill start becoming familiar with numbers in coding by implementing a calculator.

To do that, you first need to learn arithmetic operators in Python and how to ask a user for a number.

As in previous chapters, try first to solve the task by yourself and then compare your answerwith the

code below. Youwill find the code also in Jupyter Notebook 13. Let’s start!

1. What are the arithmetic operations in Python?
In Python, there are 7 arithmetic operations. Let’s quickly explore them one by one. Which ones do

you already know, andwhich ones are new?

1. Addition:
[1]: 1 4 + 3 four plus three

7

To sum two numbers, we use the arithmetic operator +, pronounced plus. As you know, the same
symbol+ is usedasaconcatenation symbolwhenmerging stringsor lists; in that case, it is pronounced
concatenated with.

2. Subtraction:
[2]: 1 6 - 2 six minus two

4

To subtract one number from another, we use the arithmetic operator -, pronouncedminus.

3. Multiplication:

[3]: 1 6 * 5 six times five
30

Tomultiply two numbers, we use themultiplication operator *, which is pronounced times. Note that
in Python (and in other programming languages), themultiplication symbol is different from the sym-

bol used in paper-and-pencil computations, which can be the cross symbol x or the mid-line dot op-
erator ·.

4. Exponentiation:

[4]: 1 2 ** 3 two to the power of three
8

To calculate the power of a number, we use the exponentiation operator **, which is pronounced to
the power of. The operation 2**3 corresponds to 23 in paper-and-pencil.

101

Part 4. Numbers and algorithms

5. Division:
[5]: 4 10 / 5 ten divided by five

2.0

Todivide anumberbyanothernumber,weusea forward slash /, andwepronounce itdividedby. Note
that the result of a division is always a decimal number.

6. Floor division:
[6]: 5 7 // 4 seven floor division four

1

Toexecute afloordivision,weuse theoperator //, composedof two forward slashes andpronounced
floor division. A floor division is a division where the result is rounded to the closest lower integer. In

this example, the result of the corresponding division / would be 1.75, thus the result of the floor
division is 1, which is the closest lower integer to 1.75. The word floor indicates that we round the
result down, that is—using ametaphor–to the floor of a house.

7. Modulo:
[7]: 7 7 % 4 seven modulo four

3

To calculate amodulus, we use the operator %, which is pronouncedmodulo. This operation calculates
a reminder (ormodulus), which is the number needed to go back to the dividend after a floor division.

For example, from cell 6 we know that the result of the floor division 7//4 is 1. If we multiply 1 (the
result) times4 (thedivisor),weget4 (4x1=4). Toget to7 (thedividend),weneed3, which is themodulus
(4+3=7). Note thatmodulo is thenameof theoperator,whilemodulus is thenameof theoperationand
a synonym for remainder. The modulus operation is used quite often in coding, as you will see in the

next chapter.

To summarize, Python provides seven arithmetic operators:

• 1 for addition (+)
• 1 for subtraction (-)
• 2 for the “multiplication family”, which aremultiplication (*) and exponentiation (**)
• 3 for the “division family”, which are division (/), floor division (//), andmodulo (%)
Note that the division operators can provide whole numbers or decimal numbers as results, indepen-

dently of the characteristics of dividend and divisor. Discover more nuance by solving the following

exercise. Test your answers in Python!

True or false?
1. The result of a division is always a whole number (e.g., without decimals). For example,

the result of 11/5 is the whole number 2
T F

2. The result of 7//2 is 3, but the result of -7//2 is -4. This is because the floor division
rounds to the closest lower integer

T F

3. The result of 7.5 % 3 is 1.5. Therefore, the result of a modulus operation can be a dec-
imal number

T F

102

Chapter 13. Implementing a calculator

2. How do we ask a user to input a number?
Whenasking a user to input a number, it’s important to be careful about variable types. Let’s seewhat

this means!

• Ask a user to input a number, assign it to a variable, and print out the variable:

[8]: 1 number = input("Insert a number:") number is assigned input Insert a number:
2 print (number) print number
Insert a number: 9
9

Weuse the built-in function input() to ask the user to type a number, andwe save the answer in the
variable number (line 1). Then, we print out the variable value (line 2). What type do you expect the

variable number to be? Let’s find out!

• Check the type of the variable number:

[9]: 1 type (number) type number
str

To know the type of a variable, we use the built-in function type(), which takes a variable as an input
and returns its type. In the printout, we see that the type of number is str, which is an abbreviation
for string. But shouldn’t 9 be an integer? Yes! However, number is a string because the built-in func-
tion input() returns strings, regardless of what a user types on a keyboard (characters, numbers, or
symbols). To transform the value of number into an actual number that we can use in calculations, we
have to transform its type from string to integer.

• Transform number into an integer, print it out, and check its type:

[10]: 1 number = int(number) number is assigned int of number
2 print (number) print number
3 type (number) type number
9
int

The built-in function int() takes a non-integer variable as an input and returns it as an integer.

Note that to actually transform a variable type, we need to reassign the output of the built-in func-

tion int() to the variable itself (line 1). At line 2, we print number, which is still 9. However, this time
number is of type int, as we can see from type(number) at line 3. What if we want a decimal number?

In that case, we have to transform the variable type into float!

• Transform number into a float, print it out, and check its type:

[11]: 1 number = float(number) number is assigned float of number
2 print (number) print number
3 type (number) type number
9.0
float

The built-in function float() takes a non�decimal variable as an input and returns it as a decimal.

Also in this case, we need to reassign the output of float() to the variable itself to actually change
the data type (line 1). From the print at line 2, we see that the variable number is now 9.0, that is, a

103

Part 4. Numbers and algorithms

decimal number. And from the command at line 3, we can see that number is now of type float. Let’s

close the circle, and go back to the variable number being a string! Howwould you do that?

• Transform number back into a string, print it out, and check its type:

[12]: 1 number = str(number) number is assigned str of number
2 print (number) print number
3 type (number) type number
9.0
str

To transform a variable into a string, we use the built-in function str(), which we learned in Chapter
8. Note that because we transform number into a string from a float (and not an integer), the value is

now 9.0—that is, it contains the decimal component.

Numerical variables can be of three types:

• Integers (whole numbers), used in computations

• Floats (decimal numbers), used in computations

• Strings, whenwe need numbers as text—for example, when concatenating them to strings

We finally know arithmetic operations in Python and how to ask a number to a user. So we are ready

to create a calculator! Where do we start? From the user inputs! Let’s find out the inputs in the

following exercise.

Complete the sentences
Complete the following sentences with the inputs you need from a user to implement a calculator. If

you are not sure, think about what you yourself enter when using a calculator:

1. The first input is .

2. The second input is .

3. The third input is .

3. Let’s create the calculator!

• Ask the user for the first input, which is the first number. What type should it be?

[13]: 1 first_number = input("Insert the first
number:")

first_number is assigned input Insert the
first number:

2 first_number = float(first_number) first_number is assigned float of
first_number

3 type (first_number) type first number
Insert the first number: 4
float

Weask the user to input the first number using the built-in function input(), andwe assign the user’s
choice to the variable first_number (line 1). Then, we need to transform the type of first_number

104

Chapter 13. Implementing a calculator

from a string into a numerical type to perform calculations. Which type do we choose: integer or

float? If the user enters a whole number, we need to transform first_number into an integer. But
what if the user enters a decimal number? Then, we need to transform first_number into a float! So
we go for an inclusive solution, that is, transforming first_number into a float to comprehend both
whole numbers and decimal numbers. Thus, we use the built-in function float(), and we reassign to
the variable first_number (line 2). Finally, we print out first_number’s type to check that it’s correct
(line 3).

• Ask the user for the second input, which is the arithmetic operator:

[14]: 1 operator = input("Insert an arithmetic
operator:")

operator is assigned input Insert an
arithmetic operator:

2 type(operator) type operator
Insert the arithmetic operator: +
str

We ask the user for an arithmetic operator and we save the value in the variable operator (line 1).
Because an arithmetic operator is a symbol, we keep it as a string, and we print out its type to check

for correctness (line 2).

• Finally, ask the user for the third and final input, which is the second number. What type should

it be?

[15]: 1 second_number = float(input("Insert the
second number:"))

second_number is assigned float of input
Insert the second number:

2 type (second_number) type second number
Insert the second number: 3
float

Aswedid forfirst_number,weask theuser for thesecondnumberusing thebuilt-in functioninput().
Then, we need to transform the user’s choice from string to float using the built-in function float().
Instead of using two separate commands likewedid at cell 13 (lines 1 and2), wenest the twobuilt-in

functions one into the other: we transform the user’s choice into a float before assigning it to the

variable second_number (line 1). Then, we print out the second_number’s type to make sure that it’s a
float (line 2).

• Let’s write the core of the calculator! How would you do it? Try out some ideas before looking at

the implementation below:

[16]: 1 if operator == "+": if operator is equal to plus
2 result = first_number + second_number result is assigned first number plus

second number
3 elif operator == "-": elif operator is equal to minus
4 result = first_number - second_number result is assigned first number minus

second number
5 elif operator == "*": elif operator is equal to times
6 result = first_number * second_number result is assigned first number times

second number
7 elif operator == "**": elif operator is equal to to the power of
8 result = first_number ** second_number result is assigned first number to the

power of second number

105

Part 4. Numbers and algorithms

9 elif operator == "/": elif operator is equal to divided by
10 result = first_number / second_number result is assigned first number divided

by second number
11 elif operator == "//": elif operator is equal to floor division
12 result = first_number // second_number result is assigned first number floor

division second number
13 elif operator == "%": elif operator is equal to modulo
14 result = first_number % second_number result is assigned first number modulo

second number
15 else: else
16 print ("You didn't enter an

arithmetic operator")
print You didn't enter an arithmetic
operator

17 print (result) print result
7.0

The operation that our code will execute depends on the arithmetic operator entered by the user;

thus, we need to take into account all possibilities. To do that, we create a long list of conditions for

the arithmetic operator, with the corresponding calculations. We start by considering addition (lines

1 and2). In the if condition,we check if the variable operator fromcell 14 is equal to the symbol +. Be-
cause operator is a string, we need to consider the addition operator as a string aswell, sowe embed
it in between quotes (i.e., "+") (line 1). In the subsequent statement, we calculate the sum between

the two numerical variables (first_number and second_number) entered by the user, and we assign
the result to the variable result (line 2). Then, we consider subtraction (lines 3 and 4). We structure

the code as we did above: first, we write a condition where we check that the variable operator is
equal to the string "-" (line 3); then, we execute the difference between the two numbers entered by
the user, andwe assign the result to the variable result (line 4).

As you might have noticed, the condition at line 3 started with the keyword elif, which is an abbre-
viation for else if. We use elif when we check several conditions on one single variable, which is

operator in this case. We continue the code with a similar structure for the remaining arithmetic

operations (lines 5–14). When using an if/elif/else construct, make sure to always test code un-
der all conditions. To do that in our example, re-enter the variables first_number, operator, and
second_number for each condition andmake sure that what gets printed is the one you expected. We

conclude the list of conditions with an else (line 15), which prints out a warning in case the user did
not enter a valid arithmetic operator (line 16). Finally, we print out the variable result to check that
our code is correct (line 17). Note that we print result at the end of the if/elif/else construct in-
stead of after each statement (lines 2,4,6,8,10,12,14) to avoid redundancy.

• Finally, let’s print out the result:

[17]: 1 print (str(first_number) + " " + operator
+ " " + str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

4.0 + 3.0 = 7.0

Weprint the result, concatenating first_number, operator, second_number, and result. Note thatwe

106

Chapter 13. Implementing a calculator

convert the numerical variables into strings for the concatenation.

Finally, let’s put it together our code to create a real calculator by merging all lines from the code

above into one single cell. This will allow us to run only one cell (instead of multiple cells) when exe-

cuting the code:

[18]: 1 # first input first input
2 first_number = float(input("Insert the

first number:")
first_number is assigned float of input
Insert the first number:

3
4 # operator operator
5 operator = input("Insert an arithmetic

operator:")
operator is assigned input Insert an
arithmetic operator:

6
7 # second input second input
8 second_number = float(input("Insert the

second number:"))
second_number is assigned float of input
Insert the second number:

9
10 # computations computations
11 if operator == "+": if operator is equal to plus
12 result = first_number + second_number result is assigned first number plus

second number
13 elif operator == "-": elif operator is equal to minus
14 result = first_number - second_number result is assigned first number minus

second number
15 elif operator == "*": elif operator is equal to times
16 result = first_number * second_number result is assigned first number times

second number
17 elif operator == "**": elif operator is equal to to the power of
18 result = first_number ** second_number result is assigned first number to the

power of second number
19 elif operator == "/": elif operator is equal to divided by
20 result = first_number / second_number result is assigned first number divided

by second number
21 elif operator == "//": elif operator is equal to floor division
22 result = first_number // second_number result is assigned first number floor

division second number
23 elif operator == "%": elif operator is equal to modulo
24 result = first_number % second_number result is assigned first number modulo

second number
25 else: else
26 print ("You didn't enter an

arithmetic operator")
print You didn't enter an arithmetic
operator

27
28 # print the result print the result
29 print (str(first_number) + " " + operator

+ " " + str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

When wemerge code in one cell at the end of an implementation, we usually edit and clean it up for

better readability. In this example, we directly transform first_number in a float by nesting the built-
in function input() into the built-in function float() (line 2); we delete all the intermediate prints
(i.e., we remove line 3 from cell 13, line 2 from cells 14 and 15, and line 17 from cell 16); and we add

107

Part 4. Numbers and algorithms

comments (lines 1, 4, 7, 10, and 28) and lines spaces (lines 3, 6, 6, 27).

Complete the table
In this chapter, you learned the seven arithmetic operators. Sum up their characteristics in your own

words in the table below:

Arithmetic

operator

Operation Pronunciation

+

-

*

**

/

//

%

Recap

• There are seven arithmetic operators in Python: +, -, *, **, /, //, %
• Numbers can be represented by three data types: integers for whole numbers, floats for decimal

numbers, and strings as text

• To transform a variable into an integer, we use the built-in function int(); to transform a variable

into a float, we use the built-in function float()
• To check the type of a variable, we use the built-in function type()
• Weuse the keyword elif to checkmultiple conditions on the same variable

Solving arithmetic expressions

Arithmetic expressions are combinations of arithmetic operations. As we do in paper-

and-pencil expressions, we execute operations in a specific order, which is summarized by

the acronym BEDMAS. First, we perform operations between brackets, then we compute

exponentiation, division, multiplication, addition, and subtraction. Here is an example:

[1]: 1 6 + 2 * 3 six plus two times three
12

108

Chapter 13. Implementing a calculator

First we execute the multiplication, followed by the addition. Thus, we first calculate 2 * 3,
which is 6, and then 6 + 6, which is 12.

Here is another example:

[1]: 1 (6 + 2) * 3 open round bracket six plus two close round
bracket times three

24

First, we execute the operation between round brackets (6 + 2), which is 8, and then themul-
tiplication 8 * 3, which is 24. Note that brackets can only be round in coding.

Let’s code!

1. Math competition. You are holding a math competition where participants have to choose among

three envelopes and solve the arithmetic operation contained in the chosen envelope:

• If the participant chooses envelope 1, she will have to solve: (3× 52 ÷ 15)−(5−22)
• If the participant chooses envelope 2, she will have to solve: −1× [(3−4× 7)÷ 5]−23 × 24÷ 6

• If the participant chooses envelop 3, she will have to solve: (36−3)×4
(15−9)÷3

Compute the solutions.

2. Geometry tutoring. You are helping your neighbor’s kid with some geometry exercises. He has to

calculate the area and volume of a cylinder, and youwant to test result correctness using Python.

Ask thekid for cylinder radiusandheight. Thencalculateareaandvolumeofa cylinderusing these

formulas: area = 2πr2 + 2πrh and volume = πr2h. Hint: What is the value of π? Assign it to a

variable!

He also has to calculate surface and area of a cube of edge length a = 4. He does not have the

right formulas, so you look for them on the internet. Write code to test whether his calculations

are correct.

3. What’s the temperature out there? You are traveling between Europe and North America, and you

need topack the right clothes. Write a temperature converter, knowing that the relationbetween

Celsius and Fahrenheit degrees isC = 5÷ 9× (F − 32). Answer these two questions:

a. The temperature inMiami is 75◦F.What is the temperature in Celsius?

b. The temperature in Lisbon is 17◦C.What is the temperature in Fahrenheit?

109

14. Playing with numbers
Common operations with lists of numbers

Lists of numbers are one of the most used data structures in coding. They follow the same rules as

lists of strings—that is, we can use slicing and methods (e.g., .append(), .remove(), etc.) to manipu-
late them. In this chapter, we will explore some typical tasks performed with lists of numbers. Open

Jupyter Notebook 14 and follow along. As we’ve done previously, try first to solve the task by your-

self: start by defining the expected solution, outline the steps to reach it, and then write the code to

solve it. When you are done, compare your implementation with the one proposed here.

1. Changing numbers based on conditions
Oneof themost common tasks in coding is changing numbers in a list basedon some conditions. Let’s

have a look at this example!

• Given the following list of numbers:

[1]: 1 numbers = [12, 3, 15, 7, 18] numbers is assigned twelve, three, fifteen, seven,
eighteen

We start with a list containing five integers.

• Subtract 1 from the numbers greater than or equal to 10, and add 2 to the numbers that are less

than 10:

[2]: 1 # for each position in the list for each position in the list
2 for i in range (len(numbers)): for i in range len of numbers
3
4 # if current number >= 10 if current number is greater than or equal to ten
5 if numbers[i] >= 10: if numbers in position i is greater than or equal

to ten
6 # subtract 1 subtract one
7 numbers[i] = numbers[i] - 1 numbers in position i is assigned numbers in

position i minus one
8
9 # otherwise otherwise
10 else: else:
11 # add 2 add two
12 numbers[i] = numbers[i] + 2 numbers in position i is assigned numbers in

position i plus two
13
14 # print the final result print the final result
15 print (numbers) print numbers
[11, 5, 14, 9, 17]

We implement a for loop to browse all the elements of the list numbers (line 2). Then, we use an if/else
construct todefineaconditionandcomputeaccordingly. If thecurrentnumber—that is,numbers[i]—
is greater than 10 (line 4), we subtract 1, andwe reassign the result to numbers[i] (line 6), similarly to

110

Chapter 14. Playing with numbers

what we saw in Chapter 11 (cell 2, line 10). If the current number is not greater than or equal to 10,
we jump to the else (line 10). Then, we add 2 to the current number, and we reassign (line 12). Let’s
see how this works step by step:

• In the first loop, i is 0 (line 2). numbers in position 0 is 12, which is greater than 10 (line 4), so we
subtract 1, obtaining 11, and we replace 12with 11 by reassigning (line 7).

• In the second loop, i is 1 (line 2). numbers in position 1 is 3, which is not greater than or equal to
10 (line 4), so we jump to the else (line 10). There, we add 2 to 3, obtaining 5, and we replace 3with
5 by reassigning (line 12).

• Etc.

Finally, we print the obtained list to check its correctness (line 12).

2. Separating numbers based on conditions
Another very common taskwith lists of numbers is to separate numbers into new lists based on given

conditions. Let’s see an example here!

• Given the following list of numbers:

[3]: 3 numbers = [2, 10, 7, 5, 0, 9] numbers is assigned two, ten, seven, five, zero,
nine

We start with a list containing six integers.

• Separate the numbers into two different lists—one for odd numbers, and one for even numbers:

[4]: 1 # initialize the empty lists initialize empty lists
2 even = [] even is assigned an empty list
3 odd = [] odd is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range (len(numbers)): for i in range len of numbers
7
8 # if the current number is even if the current number is even
9 if numbers[i] % 2 == 0: if numbers in position i modulo two equals zero
10 # add it to the list even add it to the list even
11 even.append(numbers[i]) even dot append numbers in position i
12 # otherwise otherwise
13 else: else:
14 # add it to the list odd add it to the list odd
15 odd.append(numbers[i]) odd dot append numbers in position i
10
17 # check the final results check the final results
18 print (even) print even
19 print (odd) print odd
[2,10,0]
[7,5,9]

Wecreate twoempty lists, one thatwill contain theevennumbers (line2)andonethatwill contain the

odd numbers (line 3). To fill them up, we need a for loop together with the list method .append() (or
with concatenation), as we learned in Chapter 13. Thus, we create a for loop that browses all the list

111

Part 4. Numbers and algorithms

numbers one by one (line 6). Then, we use an if/else construct to determine whether each element

of the list numberswill go to even or odd (lines 8–15). How do we decide if a number is even or odd?

We know that even numbers are divisible by 2, whereas odd numbers are not. Thus, we can use the

modulo, oneof thesevenarithmeticoperatorswe learned in thepreviouschapter. Whendividedby2,

even numbers have amodulus (or remainder) equal to 0, whereas odd numbers don’t (the remainder

is 1!). Therefore, if the remainder of the current list number (e.g., numbers[i]) dividedby2 is 0 (line9),
then we append numbers[i] to the list even (line 11). Otherwise (line 13), we append numbers[i] to
the list odd (line 15). Finally, we print the two lists to check the results (lines 18 and 19).

3. Finding the maximum of a list of numbers
A third very common task when dealing with lists of numbers is to find the maximum (or minimum)

number in a list. Try to find the maximum of the list below by yourself, drafting and experimenting

with code, before looking into the solution.

• Given the following list of numbers:

[5]: 3 numbers = [2, -5, 34, 70, 22] numbers is assigned two, minus five,
thirty-four, seventy, twenty-two

• Find themaximum number in the list:

[6]: 1 # initialize the maximum with the
first element of the list

initialize the maximum with the first element
of the list

2 maximum = numbers[0] maximum is assigned numbers in position 0
3
4 # for each position in the list

starting from the second
for each position in the list starting from the
second

5 for i in range (1, len(numbers)): for i in range one len of numbers
6
7 # if the current number is greater

than the current maximum
if the current number is greater than the
current maximum

8 if numbers[i] > maximum: if numbers in position i is greater than
maximum

9 # assign the number to maximum assign the number to maximum
10 maximum = numbers[i] maximum is assigned numbers in position i
11
12 # print the maximum of the list print the maximum of the list
13 print (maximum) print maximum
70

Wecreate avariable called maximum thatwill contain themaximumnumber in the list, andwe initialize

it with the first number in the list, which is numbers[0] (line 1). Then, we employ a for loop starting
from the second position to the last position of the elements in the list (line 5)—we do not start from

0 because it is not very meaningful to compare the value of numbers[0] (from the for loop) to itself

(assigned to maximum). Then, we check if the current number is greater than the maximum (line 8).

If so, we assign the number to the maximum (line 10). If not, we do not need to perform any action;

therefore,we can skip the else. Finally, weprint out themaximum (line13). In otherwords,weassign

the first number of the list—that is, 2—to a variable that we call maximum (line 1). Then, we compare

112

Chapter 14. Playing with numbers

all the subsequent numbers of the list to the value of maximum, and if the list number is greater than
maximum, we assign the list number to maximum (lines 5–10). When we look into each iteration, this is

what happens:

• When i is 1, numbers[1] is -5, which is not greater than 2, so we don’t do anything.
• When i is 2, numbers[2] is 34, which is greater than 2. Thus, 34 is the newmaximum and we assign

it to the variable maximum.
• When i is 3, numbers[3] is 70, which is greater than 34. Thus, 70 is the newmaximum andwe assign

it to the variable. maximum
• When i is 4, numbers[4] is 22, which is not greater than 70, so we don’t do anything. Since the for
loop is over, the value of maximum is 70, as we found in the previous iteration.

Finally, why do we initialize the variable maximumwith the first element of the list and not with a very
small number? Consider the following example. Let’s say we initialize maximum with a small number
like -999993. However, the current list could be -999993, such as [-999998, -999996, -999994], so
wewon’t be able to find themaximumof the list (i.e., -999994). Whenwe look for amaximum, picking

a specific number as the initial maximumdoesnot allowus to generalize our code. Wewant to compare

the numbers within the list.

True or false?
1. To change anumber in a list, weneed to reassign thenewvalue to the same list position. T F

2. To calculate whether a number is divisible or multiple of another number, we used the

arithmetic operation floor division.

T F

3. To calculate themaximum of a number in a list, we compare the list numbers with each

other.

T F

Recap
When dealing with lists of numbers, some of the basic tasks are:

• Changing numbers in a list depending on conditions

• Separating numbers into new lists based on conditions

• Finding themaximum (orminimum) number in a list

Don’t name variables with reserved words!
Whennamingvariables, it’s importantnot touse reservedwords, that is, namesofbuilt-in func-

tions or keywords. Howdoweknow if a name is a reservedword? Andwhat happens ifweused

it as a variable name? Consider the following example:

[1]: 1 len = 10 len is assigned ten
2 print (len) print len
10

113

Part 4. Numbers and algorithms

We create a variable called len to which we assign the number ten. As you can see, the vari-
able name is colored green, whichmeans it is a reserveword—we know that len() is a Python
built-in function, and that variablenamesare coloredblack (line1). Whenweprint thevariable,

we do not encounter any issue (line 2). However, if we want to calculate the length of a list in

subsequent code, we get an error:

[2]: 1 numbers = [1, 2, 3] numbers is assigned one, two,
three

2 len (numbers) len numbers

TypeError Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in <module>

1 numbers = [1, 2, 3]
> 2 len (numbers)

TypeError: 'int' object is not callable

The error message says: 'int' object is not callable, which means that we want to use
len as a function; instead, now len is an integer! In otherwords, by naming the variable len (cell
1, line 1), we overwrote the function lenwith an integer, andwe cannot use it as a function any-
more. To solve this issue, we have to restart the kernel, that is, we need to erase all variables

and start from scratch (see the inmore depth section in Chapter 7).

Let’s code!

1. Finding the minimum in a list of numbers. Given the following list of numbers:

numbers = [78, -900, 356, -103, 0, -78]

find theminimum number in the list.

2. Grouping numbers by position. Given the following list of numbers:

numbers = [4, 25, 7, -8, 59, 63, -10, 74]

separate the numbers in odd positions from the numbers in even positions using a for loop.

3. Number multiples. Given the following list of numbers:

numbers = [20, 24, 69, 15, 100, 16, 40, 80, 33, 57, 2, 200]

create a list for the numbers that aremultiples of 10, a list for the numbers that aremultiples of 3,

and a list for the remaining numbers. Finally, delete the list numbers.

4. Longest and shortest string. Given the following list of strings:

dogs = ["labrador", "chihuahua", "basset hound", "bernese shepherd", "poodle",
"cocker spaniel"]

find the longest and the shortest strings. Print out the two strings and their lengths.

5. Summing numbers in a list. Given the following list of numbers:

numbers = [3, 5, 2]

114

Chapter 14. Playing with numbers

calculate the sum.

6. Fibonacci sequence. The Fibonacci sequence is a sequence of numbers where the current number

is the sum of the two previous numbers. Write code that asks the user for a number n and prints

out the Fibonacci sequence of n.

Hint: Start the sequence as [1,1]

Example:

• User input: 10
• Output: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

115

15. Fortune cookies
The Pythonmodule random

Let’s continue our discovery of numbers in Python by learning how to generate random numbers.

Randomness is quite useful in coding, for example to create games or in scientific simulations. Read

the following example and try to understand it. You can play with the code in Notebook 15. Let’s

start!

• Youare at aChinese restaurant, andat theendof themeal, youget a fortune cookie. There areonly

three fortune cookies left. Each of them contains amessage:

[]: 1 fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune_cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land
is always on the mind of a flying
bird

• Which fortunecookiewill youget? Let thecomputerdecide! Todoso, thecomputerneedsaPython

module called random:

[]: 1 import random import random

• Here is yourmessage when the computer picks an index:

[]: 1 # pick a message index pick a message index
2 message_index =

random.randint(0, len(fortune_cookies)-1)
message index is assigned random
dot randint zero len of fortune
cookies minus one

3 print(message_index) print message index
4
5 # get the message get the message
6 message = fortune_cookies[message_index] message is assigned fortune

cookies at message index
7 print(message) print message

• And here is yourmessage when the computer directly picks an element:

[]: 1 # pick a message pick a message
2 message = random.choice(fortune_cookies) message is assigned random dot

choice fortune cookies
3 print(message) print message

True or false?
1. import is a function T F

2. random is a Pythonmodule T F

3. .randint() and .choice() are functions of the package random T F

4. The arguments of the functions .randint() and .choice() are of type string T F

116

Chapter 15. Fortune cookies

Computational thinking and syntax
Let’s begin by running the first cell:

[1]: 1 fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune_cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land
is always on the mind of a flying
bird

The variable fortune_cookies is a list containing 3 strings.

Let’s continue with the second cell:

[2]: 1 import random import random

Weuse the keyword import to import themodule random. What does thismean? As you know, Python

contains basic built-in functions, such as print(), input(), len(), range(), etc. However, when we
code, we often need tools for recurrent tasks, such as generating random numbers, browsing direc-

tories, computing statistics, etc. For this reason, Python contains additional units calledmodules. We

will talk about modules in greater detail in Chapter 32. For now, let’s keep inmind this definition:

Amodule is a unit containing functions for a specific task

Because in Python there are plenty of modules—which could slow down our computer if imported

all at once—we usually import only the module (or modules) that we are planning to use. To import a

module, we use the keyword import followed by themodule name.

Let’s now run cell number 3:

[3]: 1 # pick a message index pick a message index
2 message_index =

random.randint(0, len(fortune_cookies)-1)
message index is assigned random
dot randint zero len of fortune
cookies minus one

3 print(message_index) print message index
4
5 # get the message get the message
6 message = fortune_cookies[message_index] message is assigned fortune

cookies at message index
7 print(message) print message
2
Land is always on the mind of a flying bird

Themodule random contains several functions, and in this cell we use .randint() (line 2). As you can
see, the syntax to call a module function is as follows: (1) module name; (2) dot; (3) function name;

and (4) function inputs in between round brackets. The function .randint() takes two integers as
inputs—whichwe canwe call a and b (.randint(a,b))—and returns a random number between them

included—that is, a and b can be the generated random number. In our example, we want to pick a

random number representing the index (or position) of an element in the list fortune_cookies. Thus,
we couldwrite .randint(0,2). Butwhat if we added or removed some strings to or from the list? We

would have tomanually change the endpoint b, and this could be prone to error! Similarly towhatwe

117

Part 4. Numbers and algorithms

do for the stop in a for loop, we parameterise b, that is, wewrite b as a function of the length of a list.
Thus, we type len(fortune_cookies), fromwhich we subtract 1 because list indexes start from zero

(i.e.,len(fortune_cookies) is3, but the indexof the lastelement is2). After creating therandomnum-

ber, we assign it to message_index, andwe print it (line 3). Finally, we slice the list fortune_cookies in
position message_index to extract a string containing that we assign to the variable message (line 6)
and print to the screen (line 7). One last note: try to run the cell several times. What happens? Every

time .randint() returns a different number (0, 1, or 2), and thus we get a different fortune cookie
message!

Let’s have a look at the last cell:

[4]: 1 # pick a message pick a message
2 message = random.choice(fortune_cookies) message is assigned random dot

choice fortune cookies
3 print(message) print message
The man on the top of the mountain did not fall there

In this case,weuse another function fromthemodule random called .choice(), which takes a list as an
input and returns a randomly selected element of the list (line 2). Finally, we print the message (line

3).

What is the difference between .choice() and .randint()? When using .choice(), we do not know
thepositionof theelement the computer randomly selects,whereaswhenusing .randint(), weknow
where the element is in the list.

Match the sentence halves
1. In range(start, stop, step) a. module name, dot, function name()

2. In .randint(a,b) b. returns a random element from a list

3. The function .randint(a,b) c. stop is excluded
4. The function .choice(list) d. variable name, dot, method name()

5. The syntax to use a string or list method is e. the endpoint b is included
6. Thesyntax tousea function fromamodule

is

f. returns a random integer between a and
b (included)

OLD COLORS

NEW COLOR

118

Chapter 15. Fortune cookies

Recap

• Amodule is a unit containing functions for a specific task.

• To import a module, we use the keyword import. Imports are usually written at the beginning of
code, and only once.

• When calling amodule function, we use the following syntax: module_name.function_name()

• random is a module to generate random numbers. It contains several functions, including:

■ .randint(a,b): returns a random integer between the endpoints a and b (included)

■ .choice(list_name): returns an element of a list

What if I don’t use the index in a for loop?

Aswe know from the previous chapters, in a for loop, the variable i changes its value from the

start to the stop (minus 1!) of the interval created by the function range(). Within the loop,

we use i to either print out the current loop number (e.g., print ("This is loop number " +
str(i))) or to automatically slice list elements (e.g., print (friends[i])). However, in some
cases, we do not need i. Let’s look at an example:

[1]: 1 import random import random
2
3 # repeat the commands 3 times (index not

needed)
repeat the commands 3 times (index
not needed)

4 for _ in range (0,3): for underscore in range from zero
to three

5 # create a random number between 10
and 20

create a random number between ten
and twenty

6 random_number = random.randint(10,20) random_number is assigned random
dot randint ten twenty

7 # print the number print the number
8 print ("The random number is" +

random_number)
print The random number is
concatenated with random_number

The random numbers is: 14
The random numbers is: 17
The random numbers is: 12

We use a for loop to generate and print three random numbers (lines 4–8). As you can see,

we use the for loop to repeat commands that do not contain i. In this case, it is a Python style
convention to substitute i with an underscore (i.e., _) in the header of the for loop (line 4), to
signal that we do not need an index in the loop. Using i in the loop header would not be an
error, but it would decrease code readability for other Python coders.

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Tossing a coin.What are the possibilities when tossing a coin? Write them in a list. Then, toss

the coin, once using .randint() and once using .choice(). What do you get?

119

Part 4. Numbers and algorithms

b. Rolling dice. What are the possibilities when rolling a die? Write them in a list. Then, roll the

die, once using .randint() and once using .choice(). What numbers do you get? Finally,

choose onemethod and roll the die three times. What numbers do you get?

2. Ten random numbers. Create a list of 10 random numbers between 0 and 100 using a for loop.

3. Unique random numbers multiple of a number. Create a list of 100 random numbers between 5 and

60. Divide them into two lists depending on whether they are a multiple of 4 or not. Then, create

another list called unique, where you add uniquemultiples of 4 from the previous list. This means

that, for example, that if 42 is present more than once, it will appear only once in unique. If the
number is already present in unique, print out a sentence like: The number x is already in unique.
Howmany uniquemultiples of 4 could you generate randomly?

4. Playing with prime numbers. Create a list of 150 random numbers between 50 and 100, and divide

theminto listsdependingonwhether theyaremultipleof theprimenumbers2, 3, 5, or7 (anumber

can be added tomore than one lists if it ismultiple of several prime numbers). Then, sumup all the

elements for each list separately (do not use built-in functions youmight find online). Is each sum

amultiple of the original prime number? That is, is the sum of all the multiples of 3 amultiple of 3

itself?

120

16. Rock paper scissors
Introduction to algorithms

Everybody knows the game rock paper scissors! Kids in every corner of the world play this game

originating at least 2,000 years ago in China1. In this chapter, we will learn how to implement this

game in Python. How would you do it? Write your ideas in the next exercise and try to write your

own implementation. Then, have a look at the computational solution below, implemented also in

Notebook 16.

Complete the sentences
Think about three steps you need to implement rock paper scissors and write them below. Consider

that you will play against the computer: it will pick either paper, rock, or scissors, and you will do the

same. Whowins?

1. .

2. .

3. .

1. Computer pick
In the first step, the computer picks among paper, rock, and scissors. How? Let’s have a look at the

code below.

• Make the computer pick rock, paper, or scissors:

[1]: 1 import random import random
2
3 # list of game possibilities list of game possibilities
4 possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,

scissors
5
6 # computer random pick computer random pick
7 computer_pick = random.choice(possibilities) computer_pick is assigned random dot

choice possibilities
8 print(computer_pick) print computer pick
rock

We import the package random, which we learned in the previous chapter (line 1). Then, we create a
list containing the possible choices—that is, the three strings "rock", "paper" and "scissors" (line 4).
We use the function .choice() from the package random to randomly pick an element from the list

possibilities. Finally, we save the pick in the variable computer_pick (line 7) andweprint it out (line
8). In this case, the computer_pick is rock.

1https://en.wikipedia.org/wiki/Rock_paper_scissors

121

Part 4. Numbers and algorithms

2. Player choice
In the second step, it’s the player’s turn to choose among rock, paper, and scissors. Let’s have a look

below.

• Make the player choose among rock, paper, or scissors:

[2]: 1 # asking the player to make their choice asking the player to make their choice
2 player_choice = input ("Rock, paper, or

scissors?")
player choice is assigned input rock,
paper, or scissors?

3 print(player_choice) print player choice
rock, paper, or scissors? rock
rock

Weuse thebuilt-in function input to ask the player to choose among rock, paper, or scissors, andwe
save the choice in the variable player_choice (line 2). Then, we print it out as a check (line 3). In our
example, the player chooses rock.

3. Determine who wins
It’s time todeterminewhowins! Howdowedo it? Thecomputerhas threepossiblepicks, and sodoes

the player. Thus, there are nine possible scenarios. How do we code them without forgetting any?

One option is to define three situations where the computer’s pick is fixed and the player’s choice

varies. Let’s see the implementation!

• If the computer picks rock:

[3]: 1 if computer_pick == "rock": if computer pick equals rock
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "rock": if player choice equals rock
5 print("Tie!") print Tie!
6 elif player_choice == "paper": elif player choice equals paper
7 print("You win!") print You win!
8 else: else:
9 print("The computer wins!") print The computer wins!
Tie!

We start with an if condition to check if the computer pick equals "rock" (line 1). Then we evaluate
the player’s choice. If the player’s choice equals "rock" (line 4), then we print that it’s a tie (line 5).
If the player’s choice equals "paper" (line 6), then we print that the player wins (line 7). Finally, in
the remaining case—the player’s choice is "scissors"—(line 8), we print that the computer wins (line
9). The code is very simple: an if condition containing an if/elif/else construct with prints in the
statements. As you can see, we print a message directly to the player, not to the coder. You might

remember that when we code, we alternate two hats: the coder hat or the player hat (see page 14).

If we print "The player wins" (line 7), we tell the coder that the codeworks. But if we print You win!,
we talk to the player, who is the person we are coding for! Think about when you play a computer

game: what kind of messages do you get?

Inanif/elif/elseconstruct, it is important to testall conditions. Wewant tomakesure thatall state-

ments execute correctly, as we mentioned when we implemented a calculator (Chapter 13). What

122

Chapter 16. Rock paper scissors

does testingmean exactly?

Testingmeans to evaluate and verify that the code does what it is supposed to do

Howdowe test the code in this example? We rerun cell 2—wherewe ask the player to choose among

rock, paper, and scissors—two times: once entering paper and once entering scissors. After each
run, we rerun cell 3 to check that the corresponding printout is correct. It is important to enter the

strings in the same order as they appear in the conditions: first rock, then paper, and finally scissors.
Keeping the same order helps usmake sure that we test all conditions, without skipping any.

Sometimes testing is confused with debugging, but they are two very different concepts. You might

have heard the word debuggingmany times. What is its exact meaning?

Debuggingmeans identifying and removing errors from code

Debugging is a bit of a detective job. Whenwe get errormessages, orwedonot obtain the result that

we expect, we need to understand where the error is so that we can fix it. A very common way to

debug is to print variables after every line of code, to check the value they are assigned. When the

variable value is not theexpectedone, that’swhere theerrorhappens! Oncewehave found theerror,

we can fix it, and then we can keep coding. To understand further why we use the word debugging,

read the ”in more depth” section at the end of this chapter.

Let’s continue implementing rock paper scissors, looking at the second computer pick possibility.

• If the computer picks paper:

[4]: 1 if computer_pick == "paper": if computer pick equals paper
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "paper": if player choice equals paper
5 print("Tie!") print Tie!
6 elif player_choice == "scissors": elif player choice equals scissors
7 print("You win!") print You win!
8 else: else:
9 print("The computer wins!") print The computer wins!

The structure of the code is the same as in the previous cell: an if condition (line 1) containing an
if/elif/else construct (lines 4–9). What changes are the terms of comparison—that is, the strings—

in theconditions: wecheck if thecomputerpicks"paper", andwechange theconditions for theplayer
according to the printedmessages.

When we write code with a repetitive structure—like in our example—it is crucial to use parallelism.

What is parallelism?

Parallelismmeansmaintaining a corresponding structure

for subsequent lines or blocks of code

In our example, we can either keep the conditions in the sameorder—e.g., the first termof comparison

is always "rock", the second is always "paper", and the third is always "scissors"—or we can keep

123

Part 4. Numbers and algorithms

the statements in the same order—that is, the first message is always "Tie!" (line 5 in both cells 3
and 4), the second is always "You win!" (line 7 in both cells), and the third is always "The computer
wins!" (line 9 in both cells). Parallelism helps us remember to list all conditions in every construct,

and it improves code readability.

Once more, let’s not forget to test all conditions. We first have to make sure that the computer pick

is paper. Sincewe have only three options, a simpleway is to rerun cell 1 until we getwhatwe need—
that is, "paper". Then, we re-run cells 2 and 4 three times, each time entering the player choice and
testing the corresponding print, in the same order as in the if/elif/else construct. In other words,
first we enter "paper" at cell 2, and run cell 4 to test lines 4–5. Then, we enter "scissors" at cell 2,
and run cell 4 testing lines 6–7. And finally, we enter "scissors" at cell 2, and run cell 4 to test lines
8–9.

Let’s finally look into the third scenario.

• If the computer picks scissors:

[5]: 1 if computer_pick == "scissors" if computer pick equals scissors
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "scissors": if player choice equals scissors
5 print("Tie!") print Tie!
6 elif player_choice == "rock": elif player choice equals rock
7 print("You win!") print You win!
8 else: else:
9 print("The computer wins!") print The computer wins!

Also in this last case, the code structure is similar: an if condition (line 1) nesting an if/elif/else
construct (lines4–9). Wecheck if the computer picked "scissors"and if theplayer chose "scissors"
(line 4), "rock" (line 6), or "paper" (the else in line 8). As in cell 4, we construct the conditions so that
the print statements are parallel to the conditions in cell 3. Finally, oncemore, wewant tomake sure

we test thecode. Thus, firstwe re-runcell 1,making sure that thecomputer_pick is"scissors". Then,
we re-run cells 2 and 5, subsequently entering and testing for "scissors", "rock", and "paper".

Note that we considered awell-behaved player, that is, a player that enters rock, paper, or scissors
correctly,withoutanymisspelling. Wewill assumethatwearedealingwithwell-behavedplayers inall

coming chapters to focus on coding syntax and thinking. Wewill learn to check for input correctness

in Chapter 30.

At this point, the code is completed! As coders, we have taken care of the various parts of the code,

writing and testing them. Now it’s time to put all the code together for the player!

124

Chapter 16. Rock paper scissors

Merging the code

• Let’s merge the code:

[6]: 1 import random import random
2
3 # list of game possibilities list of game possibilities
4 possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,

scissors
5 # computer random pick computer random pick
6 computer_pick = random.choice(possibilities) computer_pick is assigned random dot

choice possibilities
7
8 # asking the player to make their choice asking the player to make their choice
9 player_choice = input ("Rock, paper, or

scissors?")
player choice is assigned input rock,
paper, or scissors?

10
11 # determine who wins determine who wins
12 # if the computer picks rock if the computer picks rock
13 if computer_pick == "rock": if computer pick equals rock
14 # compare to the player's choice compare to the player's choice
15 if player_choice == "rock": if player choice equals rock
16 print("Tie!") print Tie!
17 elif player_choice == "paper": elif player choice equals paper
18 print("You win!") print You win!
19 else: else:
20 print("The computer wins!") print The computer wins!
21
22 # if the computer picks paper if the computer picks paper
23 if computer_pick == "paper": if computer pick equals paper
24 # compare to the player's choice compare to the player's choice
25 if player_choice == "paper": if player choice equals paper
26 print("Tie!") print Tie!
27 elif player_choice == "scissors": elif player choice equals scissors
28 print("You win!") print You win!
29 else: else:
30 print("The computer wins!") print The computer wins!
21
12 # if the computer picks scissors if the computer picks scissors
33 if computer_pick == "scissors" if computer pick equals scissors
34 # compare to the player's choice compare to the player's choice
35 if player_choice == "scissors": if player choice equals scissors
36 print("Tie!") print Tie!
37 elif player_choice == "rock": elif player choice equals rock
38 print("You win!") print You win!
39 else: else:
40 print("The computer wins!") print The computer wins!
Rock, paper, or scissors? rock
You win!

When merging code, we usually do some editing to improve code use and readability. In this case,

weerased theprint of computer_pick (whichwas in cell 1, line8) becausewedonotwant theplayer to
know the computer choice in advance. Similarly, we delete the print of player_choice
(which was in cell 2, line 3), as the player already sees their choice from the entry at line 9. Other

125

Part 4. Numbers and algorithms

editing might include improving comments, making variable names more meaningful, restructuring

parts of the code, etc.

Let’s nowzoomout andobserve theprocedureweuse to implement the game. Wefirst defined three

steps (see theexerciseComplete the sentences). Then,we implementedeach step separately (seepara-

graphs 1. Computer pick, 2. Player choice, and 3. Determine who wins). Finally, we merged all the code

together and edited it (seeMerging the code). This way of approaching a task is called divide and con-

quer.

Divide and conquermeans dividing a project into sub-projects, solving the sub-projects, and

combining the solutions of the sub-projects to obtain the solution of the original project

In other words, there are three steps to solve a computational (but not strictly computational!) task:

1. Break the project into subprojects

2. Solve the subprojects separately

3. Merge the solutions of the subprojects to obtain the solution of the whole project

Last but not least, let’s talk about algorithms! You have surely heard this word many times. What is

an algorithm?

An algorithm is a sequence of rigorous steps to execute and complete a task

Algorithms are just procedures to solve tasks, problems, or assignments. Theydonot have tobe com-

plicated. They can actually be pretty simple. There are plenty of algorithms in everyday life! Think

about the sequence of steps you make to brush your teeth: taking the toothpaste tube, opening and

squeezing it, placing toothpaste on the toothbrush, etc. This is an algorithm! Or think about cooking

recipes, especially printed recipes. At the top, there is a list of ingredients (e.g., 2 carrots, 3 onions),

which are the variables (e.g., carrots = 2, onions = 3). Then, there is the execution of the recipe,
that is, the steps to process the ingredients into the final dish. In programming,many algorithms have

beendeveloped in the past fewdecades. Themost famous algorithmsweredesigned to sort lists, find

prime numbers, find elements in a list, etc. We will not look into them in this book, but you can find

plenty of examples and explanations in more advanced books and on the internet.

126

Chapter 16. Rock paper scissors

Complete the table
In this chapter, you learned severalmore important concepts in coding. Write their definitions in your

ownwords:

Concept Definition

Testing

Debugging

Parallelism

Divide and conquer

Algorithm

Recap

• An algorithms is a sequence of steps to execute a task

• Whenwritinganalgorithm (andcode ingeneral),we largelyuseparallelism, testing, debugging, and

divide and conquer

Why do we say Debugging, Divide and conquer, and Algorithms?

Doyouknowwhywesaydebugging,divideandconquer, andalgorithms? The termdebuggingorig-

inated in 1947, when a moth was found in a relay of Mark II computer at Harvard University,

causing the computer to malfunction. The moth was then taped to a log sheet, with the anno-

tation Relay 70 Panel F (moth) in relay. First actual case of a bug being found (see figure below).

Although the word debugging is not mentioned in the annotation, it became popular thanks

to Grace Hopper, who worked on the same computera,b. Divide and conquer is attributed to

Philip II of Macedon, and it was reused by the Roman ruler Julius Caesar, the French emperor

Napoleon, andmanymorec. It refers to amilitary strategywhere the invaders divide theenemy

forces to defeat themmore easily and conquer them as awhole. Finally, the term algorithm de-

rives from al-Khwarizmi, the last name of Muhammad ibn Musa al-Khwarizmi, a 9th-century

Persian mathematician and astronomer whose books were widely read in Europe in the late

MiddleAges. Hewrote a book on theHindu–Arabic numeral system,whichwas translated into

Latin in the 12th century. The latin manuscript starts with the phrase Dixit Algorizmi (”Thus

spoke Al-Khwarizmi”), where ”Algorizmi” was the translator’s Latinization of Al-Khwarizmi’s

last named.
ahttps://en.wikipedia.org/wiki/Debugging
bhttps://en.wikipedia.org/wiki/Grace_Hopper
chttps://en.wikipedia.org/wiki/Divide_and_rule
dhttps://en.wikipedia.org/wiki/Algorithm

127

Part 4. Numbers and algorithms

The page of the log from theMark II with themoth taped on it. It dates 9 September 1947.

The time is 15:45 as visible on the top left. The log book is at the Smithsonian Institution’s

NationalMuseum of American History inWashington, D.C., United States.

Let’s code!

1. Trivia night!. Trivia is a quiz gamewhere players have to answer questions about various subjects.

For this implementation of Trivia, prepare 3 questions and their corresponding answers for 3 dif-

ferent topics. Ask the player to pick a topic, and then ask a randomly picked question about that

topic. Finally, tell the player whether the answer is correct. If not, print out the correct answer.

Here are some hints:

• How do you organize your questions and answers? What Python data types do you use?

• What is the sequenceof actions youneed toperform? Write themdownbefore coding. You can

always update themwhile implementing

• How do you test that your code is correct?

• Remember to divide and conquer!

128

PART 5
THE WHILE LOOP
AND CONDITIONS
In part 5, you will learn the last construct in coding: the while loop. You will also learn various types

of conditions that you can use in while loops and if/elif/else statements. Let’s go!

17. Do you want more candies?
The while loop

In coding, there are three constructs: if/elif/else, for loops, and while loops. You have now mas-

tered the first two, and in this chapter, youwill finally learn the while loop! Read the code below, and
try to understandwhat it does. Follow along with notebook 17!

[]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # print the initial number of candies print the initial number of candies
5 print("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

6
7 # ask if one wants a candy ask if one wants a candy
8 answer = input ("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

9
10 # as long as the answer is yes as long as the answer is yes
11 while answer == "yes": while answer equals yes:
12
13 # add a candy add a candy
14 number_of_candies += 1 number_of_candies is incremented by one
15
16 # print the current number of candies print the current number of candies
17 print("You have " + str(number_of_candies)

+ " candies")
print You have concatenated with str
number of candies concatenated with
candies

18
19 # ask again if they want more candies ask again if they want more candies
20 answer = input ("Do you want more

candies? (yes/no)")
answer is assigned input Do you want
more candies? (yes/no)

21
22 # print the final number of candies print the final number of candies
23 print("You have a total of" +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

Complete the followingexercise tostartgetting toknowthesyntaxandfunctionalityof thewhile loop!

True or false?
1. while is a variable T F

2. The while loop header contains a condition T F

3. The variable answer appears 2 times in the code T F

4. The variable number_of_candies increases by one unit at each loop T F

5. The while loop continues as long as the player inputs yes and stops when the player
inputs no

T F

131

Part 5. The while loop and conditions

Computational thinking and syntax
Let’s run the cell, and let’s analyze the code in two separate blocks. We’ll start with the first block:

[1]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # print the initial number of candies print the initial number of candies
5 print("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

We create a variable called number_of_candies and initialize it to 0 (line 2). This variable will keep
count of the number of candieswewant. It is a very important variable, andwewill talk about it again

whenanalyzing the secondblockof code. At line5,weprintout thenumberof candieswehave,which

is zero.

Let’s look into the next block, which is the core of the whole code:

7 # ask if one wants a candy ask if one wants a candy
8 answer = input ("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

9
10 # as long as the answer is yes as long as the answer is yes
11 while answer == "yes": while answer equals yes:
12
13 # add a candy add a candy
14 number_of_candies += 1 number_of_candies is incremented by one
15
16 # print the current number of candies print the current number of candies
17 print("You have " + str(number_of_candies)

+ " candies")
print You have concatenated with str
number of candies concatenated with
candies

18
19 # ask again if they want more candies ask again if they want more candies
20 answer = input ("Do you want more

candies? (yes/no)")
answer is assigned input Do you want
more candies? (yes/no)

21
22 # print the final number of candies print the final number of candies
23 print("You have a total of" +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

You have 0 candies
Do you want a candy? (yes/no) yes
You have 1 candies
Do you want more candies? (yes/no) yes
You have 2 candies
Do you want more candies? (yes/no) no
You have a total of 2 candies

Let’s see how the while loop works. We ask the player whether they want a candy, and we save

the reply in the variable answer (line 8). Then, we continue with the while loop header, which says
something like: as long as the variable answer is equal to yes, do the following (line 11): add a unit
to the variable number_of_candies (line 14); print out the current number of candies (line 17), and

132

Chapter 17. Do you want more candies?

ask again the player if they want more candies (line 20). Then, we go back to the while loop header

(line 11). If the answer at line 20 was yes, we’ll do the same as above, that is: add a unit to the vari-

able number_of_candies (line 14); print out the current number of candies (line 17), and ask again the
player if they want more candies (line 20). Then, we will go back to the while loop header again (line

11). If the answer at line 20was yes again, wewill do the same as above oncemore, that is: add a unit

to the variable number_of_candies (line 14), ... We’ll keep doing this as long as the variable answer is
equal to yes. What if the player answers no at line 20? Whenwegoback to thewhile loopheader (line

11), the condition is not valid anymore, because answer is not equal to yes! So the loop stops, and we
go directly to the first line after thewhile loop body (line 23). There, we print out the total number of

candies.

Let’s now look into the syntax. The while loop starts with a header (line 11), which is composed of

three parts: (1) the keyword while, (2) a condition, and (3) colon : (every construct header ends with
a colon!). In this example, we check whether the value assigned to the variable answer equals the
string "yes". We will see other kinds of conditions in the next chapter. After the header, there is

the body of the while loop (lines 13–20). The body is indented, similarly to the for loop body and
if/elif/else statements. Let’s now focus our attention on two variables: answer and

number_of_candies.

How many times do you see the variable answer and where? answer is in three different places: (1)
before the while loop (line 8), (2) in the condition of the while loop, and (3) in the body of the while

loop. Why do we need it three times? Before a while loop, we always have to initialize the variable

contained in theconditionof thewhile loopheader; otherwise,wecannotevaluate thecondition itself

when the loop starts. In our example, we initialize answerwith the first player’s answer (line 8). Then,
wehavetocheckthecondition involving thevariableanswer. In thiscase,wecheck ifanswer isequal to
yes (line 11). Finally, we have to allow the variable to change (line 20), so that the loop can terminate;

otherwise, the loopwill keep going indefinitely. Sooner or later, we all forget this last part, andwe get

into an infinite loop! If that happens to you, just stop the cell (if it takes too long, restart the kernel!)

Let’s finally look into the variable number_of_candies. How many times do you see it and where?

number_of_candies is in two places: (1) before thewhile loop, where it is initialized (line 2), and (2) in
the while loop, where it is incremented by one unit at every loop (line 14). The variable

number_of_candies is generally called counter because it keeps count of the number of loops. The

symbol += is an assignment symbol, andwe can pronounce it as incremented by. It is a compactway of

writing

number_of_candies = number_of_candies + 1. For any arithmetic operator, there is the associated
assignment operator, that is, -= (decrease by), *= (multiply by and reassign), /= (divide by and reassign),
etc. Note that in assignment operators, the symbol = is always in the second position, after an arith-
metic operator.

133

Part 5. The while loop and conditions

What is the difference between a for loop and a while loop? In Chapter 8, we defined the while loop

as follows:

A for loop is the repetition of a group of commands

for a determined number of times

In a for loop, we know exactly howmany timeswe are going to run the commands in the loop body.

Conversely, in awhile loopwedonotknowhowmany timeswearegoing to run the commands in the

loop body because the duration of awhile loop depends on the validity of the condition in the header.

Let’s define the while loop and summarize its characteristics:

Awhile loop is the repetition of a group of commands

as long as a condition holds

A while loop stops when the condition in the header is not true anymore. We always have to give

the variable in the condition the possibility to change so that the condition in the header can be false

and the loop can stop. If the variable in the condition (answer in our example) cannot change in the
while loop body, then we will get an infinite loop. Finally, to know how many times we run the loop,

we can use a counter (number_of_candies in our example) to keep track of the number of iterations.
The presence of a counter is not compulsory.

Insert into the right column
So far, you have learned several operators: arithmetic, assignment, and comparison operators. Insert

each symbol in the right column:

+, ==, *=, <, /, *, <=, =, //=, /=, //, !=, -=, -, +=, >=, %=, **, %, **=, >

Arithmetic operators Assignment operators Comparison operators

134

Chapter 17. Do you want more candies?

Recap

• Awhile loop is the repetition of a bunch of commands as long as a condition holds

• The variable in the condition must be initialized before the condition. It also has to change some-

where in the loop body so that the loop can stopwhen the condition does not hold anymore

• Awhile loop canhavea counter. Counters keep trackof thenumberof loops andmust be initialized

before the loop header

• When updating a variable with an arithmetic operation, we can use the corresponding assignment

operator, that is, +=, -=, etc.

Writing code is like writing an email!

What steps do we do when writing an email? We start with recipient’s address and email

subject, then we continue with the salutation, the body of the email, greetings, and we finish

with signature (an algorithm, isn’t it?). Once we are done, we read the email again for a check.

We correct some misspellings, and we quickly edit a few things here and there. Often, we go

deeper: we reformulate some sentences or we completely rearrange some paragraphs. With-

out realizing it, we have gone through the email a couple of times! Now, think about the steps

wemakewhenwriting code. First, wewrite the imports, the variables, and the implementation

of an algorithm. Thenwe test it to we check whether it works, and if not, we correct it. Once it

finally works, we remove unused variables, compact some code lines, improve variable names,

and clean comments. Like we do for emails, we look at our code circularly, that is, from top to

bottom a couple of times, exactly like when we re-read an email. But for some reason, when

we code, we often want the first draft to be the final implementation, and we get frustrated if

this doesn’t happen. Whenwriting code, consider the time you spend testing, debugging, and

improving the codeaspart of theprocess, not as someextra time that prevents you fromdoing

something else! It’s all part of the process!

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Do you want more cookies?

b. Do you want less exercises?

2. At the cheese shop. You own a cheese shop, and you sell slices of cheese at 50c each. A new cus-

tomer comes in, and you ask if they want cheese. The customer is uncertain of howmuch cheese

to buy, so after every slice, you ask again if they want another slice of cheese. As long as the cus-

tomer says yes, then you add a slice of cheese, update the final price, and tell them the amount of

slices of cheese and the price so far. How many slices of cheese did you sell? And what was the

final price?

3. Playing with numbers. Given the following list: numbers = [0], ask the player if you should add
anothernumber to the list. As longas theplayer says yes, add to the list the sumof the last number

135

Part 5. The while loop and conditions

you added and the counter of the current loop Example: If you run the while loop 7 times, youwill

get the following list: [0, 1, 3, 6, 10, 15, 21, 28]

4. Generating even numbers. Given an empty list, ask the player if you should add another number to

the list. As long as the player says yes, create a random number between 0 and 100, and if the

number is even, then add it to the list. How many numbers did you generate? How many even?

Howmany odd? What is the ratio between the amount of even and odd numbers you generated?

136

18. Animals, unique numbers, and sum
Various kinds of conditions

In the previous chapter, we saw only one kind of condition in a while loop—that is, that a variable

is equal to "yes". Let’s now take a look at three examples with other kinds of conditions. First, try

to solve each task by yourself: read the requirements carefully, list the steps to execute, implement

themone by one, andmerge the code to the solution (divide and conquer!). This time, also try to take

it one a step further: keep an eye on the processes that your mind goes through while solving the

tasks. You will often find recurring thinking patterns when coding. Knowing and recognizing them

will give you awareness and thus speed up your work. For each of the following examples, you will

see a possible way to approach the coding task at hand. Maybe it will be similar to your thinking, or

maybe it will be different. In any case, it will give you an idea of possible thinking pathways. You can

play with the proposed solutions onNotebook 18. Enough talk—let’s start coding!

1. Guess the animal!

• Given the following list:

1 animals = ["giraffe", "dolphin", "penguin"] animals is assigned giraffe, dolphin,
penguin

• Create a game inwhich the computer randomlypicks oneof the three animals and theplayer has to

guess the animal picked by the computer. Make sure that the player keeps playing until they guess

the animal picked by the computer. At the end of the game, tell the player how many attempts it

took to guess the animal.

The game has four requirements: (1) the computer randomly picks one of the three animals; (2) the

player has to guess the animal picked by the computer; (3) the player keeps playing until they guess

the animal picked by the computer; and (4) at the end of the game, tell the player howmany attempts

it took to guess the animal. Let’s see how to implement each requirement!

1. The computer randomly picks one of the three animals. This is pretty straightforward:

1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(animals) computer pick is assigned random dot

choice animals
5 print(computer_pick) print computer pick
dolphin

We import the package random (line 1), andwe use its function .choice() tomake the computer pick
a random element from the list animals (line 4). Then, we print computer_pick as a check (line 5).

137

Part 5. The while loop and conditions

2. The player has to guess the animal picked by the computer. This task is also easy:

1 # player guess player guess
2 player_guess = input ("Guess the animal!

Choices: giraffe, dolphin, penguin:")
player guess is assigned input Guess
the animal! Choices: giraffe, dolphin,
penguin:

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe

Weuse the functioninput() toask theplayer to input their guess (line2). Weassumethat theplayer’s

input is giraffe.

3. The player keeps playing until they guess the animal picked by the computer. The phrase ”until they

guess the animal” is equivalent to ”as long as they guess the animal”, which immediately suggests to us

that we should use a while loop. What condition dowewrite in the header? Let’s see:

1 # as long as the player's guess and the
computer's pick are different

as long as the player's guess and the
computer's pick are different

2 while player_guess != computer_pick: while player guess is not equal to
computer pick:

3
4 # tell the player that the animal is

not right
tell the player that the animal is not
right

5 print("That's not the right animal!") print That's not the right animal!
6
7 # ask the player to guess again ask the player to guess again
8 player_guess = input ("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

9
10 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

12 print("Well done! You guessed " +
computer_pick)

print Well done! You guessed
concatenated with computer pick

That's not the right animal!
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin

The loop must stop when the player guesses the animal, that is, until player_guess and

computer_pick are the same. In general, when a requirement defines the condition that stops a

while loop, we have to think the opposite way: we need to find the condition that allows the while

loop to keep going. In our example, the loop must keep going as long as player_guess is not equal to
computer_pick (line 2). In the loop body, we provide a feedback to the player saying that the animal
they picked in not right (line 5), and we ask the player to guess the animal again (line 8) so that the

while loop can continue. Finally, after the loop, we print out a message confirming that the player

guessed the right animal (line 12).

4. At the end of the game, tell the player howmany attempts it took to guess the animal. Wedefinitely need

a counter!

1 # initializing the counter initializing the counter
2 n_of_attempts = 1 n of attempts is assigned one
3

138

Chapter 18. Animals, unique numbers, and sum

4 # as long as the player's guess and the
computer's pick are different

as long as the player's guess and the
computer's pick are different

5 while player_guess != computer_pick: while player guess is not equal to
computer pick:

6
7 # tell the player that the animal is

not right
tell the player that the animal is not
right

8 print("That's not the right animal!") print That's not the right animal!
10 # print the numbers of attempts so far print the numbers of attempts so far
11 print("Number of attempts so far: " +

str(n_of_attempts)
print Number of attempts so far:
concatenated with str n of attempts

12
13 # increase the number of attempts increase the number of attempts
14 n_of_attempts += 1 n of attempts is incremented by one
15
16 # ask the player to guess again ask the player to guess again
17 player_guess = input ("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

18
19 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

20 print("Well done! You guessed " +
computer_pick + " at attempt number " +
str(n_of_attempts)

print Well done! You guessed
concatenated with computer pick
concatenated with at attempt number
concatenated with str(n of attempts)

That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

Wecreate thecountern_of_attempts (line2), andwe initialize it to1. Why1andnot to0? Because the
player enters thefirst input before thewhile loop (see requirement2. The player has to guess the animal

picked by the computer), and that is the first attempt! Then, we tell the player the current number of

attempts (line 11) and increase n_of_attempts by one unit at every loop (line 14). Finally, we include
the total number of attempts to the last print (line 20).

After solving the four tasks, we canmerge the code together! Here is the complete solution:

[1]: 1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(animals) computer pick is assigned random dot

choice animals
5 # print(computer_pick) print computer pick
6
7 # player guess computer pick
8 player_guess = input ("Guess the animal!

Choices: giraffe, dolphin, penguin:")
player guess is assigned input Guess
the animal! Choices: giraffe, dolphin,
penguin:

9
10 # initializing the counter initializing the counter
11 n_of_attempts = 1 n of attempts is assigned 1
12

139

Part 5. The while loop and conditions

13 # as long as the player's guess and the
computer's pick are different

as long as the player's guess and the
computer's pick are different

14 while player_guess != computer_pick: while player guess is not equal to
computer pick:

15
16 # tell the player that the animal is

not right
tell the player that the animal is not
right

17 print("That's not the right animal!") print That's not the right animal!
18
19 # print the numbers of attempts so far print the numbers of attempts so far
20 print("Number of attempts so far: " +

str(n_of_attempts)
print Number of attempts so far:
concatenated with str n of attempts

21
22 # increase the number of attempts increase the number of attempts
23 n_of_attempts += 1 n of attempts is incremented by one
24
25 # ask the player to guess again ask the player to guess again
26 player_guess = input ("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

27
28 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

29 print("Well done! You guessed " +
computer_pick)

print Well done! You guessed
concatenated with computer pick

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe
That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

Note that we commented out the print of the computer_pick (line 5), as the final code is for a player
and not for a coder!

2. Create a list of 8 unique random numbers!
Here is our next task:

• Create a list of 8 random numbers between 0 and 10. Make sure they are unique, meaning each

number is present only once in the list. If the number is already in the list, then print the following:

The number x is already in the list. How many numbers did you generate before finding 8 unique

numbers?

The task has four requirements: (1) create a list of 8 random numbers between 0 and 10; (2) make

sure they are unique, that is, each number is present only once in the list; (3) if the number is already

in the list, then print The number x is already in the list; and (4) how many numbers did you generate

before finding 8 unique numbers? Let’s go through the requirements one by one!

1. Create a list of 8 random numbers between 0 and 10.

According to this requirement only, we can create a list of 8 numbers using a for loop and the function

.randint() from themodule .random:

140

Chapter 18. Animals, unique numbers, and sum

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # for 8 times for eight times
7 for _ in range (8): for underscore in range eight
8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 unique_random_numbers.append

(random.randint(0,10))
unique random numbers dot append
random dot randint zero ten

11
12 # print the list print the list
13 print(unique_random_numbers) print unique random numbers
[7, 9, 3, 2, 3, 0, 9, 6]

We import the package random (line 1), and we initialize unique_random_numbers—which will contain
the created numbers—to an empty list (line 4). Then, we create a for loop, where we generate eight

random numbers between 0 and 10, and we append them to unique_random_numbers (lines 6–10).
Note that we use an underscore instead of the variable i in the loop header because we do not need
i in the loop body (see the “Inmore depth” sectionWhat if I don’t use the index in a for loop? in Chapter

15). Finally,weprint unique_random_numbers to check that it actually contains eight randomnumbers

(line 13). Let’s go to the next requirement!

2. Make sure they are unique, which means each number is present only once in the list. In the list we

printed out above, the numbers are not unique: both 3 and 9 are present twice. Thus, we need to

modify our code. How? We do not know how many random numbers we need to generate before

obtaining 8 unique numbers, that is, we do not know howmany times we need to run the command

unique_random_numbers.append(random.randint(0,10)) (line 9 in the cell above). For this reason,
we cannot use a for loop—whichwe usewhenwe know the exact number of iterations—butwe need

to use a while loop, which we use when the number of iterations is determined by a condition. Mak-

ing changes in code during the drafting process is normal, as we mentioned in the “In more depth”

section of the previous chapterWriting code is like writing an email! What condition do we use in this

while loop? The listmust be composedof 8 elements, thus its length has to be8! Let’s see howwe can

transform the code:

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5

141

Part 5. The while loop and conditions

6 # as long as the length of the list is not 8 as long as the length of the list is
not eight

7 while len(unique_random_numbers) != 8: while len of unique random numbers is
not equal to eight

8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 number = random.randint(0,10) number is assigned random dot randint

zero ten
11
12 # if the number is already in the list if the number is already in the list
13 if number in unique_random_numbers: if number in unique random numbers:
14 # place holder place holder
15 a = 0 a is assigned zero
16 # otherwise otherwise
17 else: else:
18 # add the new number to the list add the new number to the list
19 unique_random_numbers.append(number) unique random numbers dot append

number
20
21 # print the list print the list
22 print(unique_random_numbers) print unique random numbers
[1, 8, 10, 7, 3, 0, 5, 9]

At line 7, we substitute the header of the for loop with the header of a while loop, with the condi-

tion that the loop keeps going as long as the length of the list is not equal to 8. Then, we generate a

random number (line 10). We need to make sure that the random number is a new one (or unique!)

before adding it to the list. Thus, we create an if ... in / else construct (lines 12–19), which we
learned in Chapter 3. If the number is already in the list (line 13), then we do not want to add it to

the list. The next requirement will tell us what to do, so right now we can just use a placeholder, or

a nonfunctional command in our code that we plan to substitute (a=0, line 15). Using placeholders
is not very good coding practice, but sometimes we can make an exception in the very early drafting

phase. If the number is not in the list (else at line 17), thenwe append it to the list (line 19)

3. If the number is already in the list, then print: The number x is already in the list

We substitute the placeholder a=0with the print commands (line 15):

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5

142

Chapter 18. Animals, unique numbers, and sum

6 # as long as the length of the list is not 8 as long as the length of the list is
not eight

7 while len(unique_random_numbers) != 8: while len of unique random numbers is
not equal to eight

8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 number = random.randint(0,10) number is assigned random dot randint

eight ten
11
12 # if the number is already in the list if the number is already in the list
13 if number in unique_random_numbers: if number in unique random numbers:
14 # print that the number is in the list print that the number is in the list
15 print ("The number " + str(number) +

" is already in the list")
print The number concatenated with
str number concatenated with is
already in the list

16 # otherwise otherwise
17 else: else:
18 # add the new number to the list add the new number to the list
19 unique_random_numbers.append(number) unique random numbers dot append

number
20
21 # print the list print the list
22 print(unique_random_numbers) print unique random numbers
The number 1 is already in the list
The number 10 is already in the list
The number 7 is already in the list
The number 5 is already in the list
[1, 8, 10, 7, 3, 0, 5, 9]

As we can see in the printouts, the numbers 1, 10, 7, and 5 were generated twice, but they are in the

list only once!

4. Howmany numbers did you generate before finding 8 unique numbers?

To satisfy this last requirement, we need a counter. It will keep track of the amount of numbers we

generated, which coincides with the number of iterations of the while loop!

[2]: 1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # initialize the counter initialize the counter
7 counter = 0 counter is assigned zero
8
9 # as long as the length of the list is not 8 as long as the length of the list is

not eight
10 while len(unique_random_numbers) != 8: while len of unique random numbers is

not equal to eight
11
12 # create a random number between 0 and 10 create a random number between zero

and ten
13 number = random.randint(0,10) number is assigned random dot randint

zero ten

143

Part 5. The while loop and conditions

14
15 # increase the counter by 1 increase the counter by one
16 counter += 1 counter is incremented by one
17
18 # if the number is already in the list if the number is already in the list
19 if number in unique_random_numbers: if number in unique random numbers:
20 # print that the number is in the list print that the number is in the list
21 print ("The number " + str(number) +

" is already in the list")
print The number concatenated with
str number concatenated with is
already in the list

22 # otherwise otherwise
23 else: else:
24 # add the new number to the list add the new number to the list
25 unique_random_numbers.append(number) unique random numbers dot append

number
26
27 # print the final list and the total amount

of generated numbers
print the final list and the total
amount of generated numbers

28 print(unique_random_numbers) print unique random numbers
29 print("The total amount of generated numbers

is: + str(counter))
print The total amount of generated
numbers is: concatenated with str
counter

The number 1 is already in the list
The number 10 is already in the list
The number 7 is already in the list
The number 5 is already in the list
[1, 8, 10, 7, 3, 0, 5, 9]
The total amount of generated numbers is: 12

We initialize the counter (line 7), increment it by one unit at each iteration (line 16), and print it out

(line 29).

3. Sum up the multiples of 3

• Write code that continues asking a player to enter an integer until they enter a negative number.

At the end, print the sum of all entered integers that aremultiples of 3.

The task has two requests: (1) keep asking a player to enter an integer until they enter a negative

number, and (2) at the end, print the sum of all entered integers that aremultiples of 3. Let’s see how

to implement them!

1. Keep asking a player to enter an integer until they enter a negative number. The requirement is straight-

forward: weuse theinput function toask theplayer toenternumbersandawhile loop tokeepasking.
Which condition dowe use in the header? Let’s have a look:

1 # ask the user for an integer ask the user for an integer
2 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
3

144

Chapter 18. Animals, unique numbers, and sum

4 # as long as the number is positive as long as the number positive
5 while number >= 0: while number is greater than or

equal to zero
6 # ask for the next new integer ask for the next new integer
7 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1

The loop must continue as long as the player enters a negative number, that is, as long as number is
positive—greater than or equal to zero (line 5). As we learned in the previous chapter, the variable

in the condition has to be in three places: before the loop, in the loop header, and within the loop.

Thus, first we initialize the variable number with the integer entered by the player (line 2). Then, we
condition the variable in the while loop header (as we saw in line 5). And finally, to avoid an infinite

loop, we ask the player to enter a new number (line 7). Let’s implement the second requirement!

2. At the end, print the sum of all entered integers that are multiples of 3.

We need to check whether the numbers the user enters are multiples of 3, and, if they are, then sum

them up. Ideas on how to do it? Let’s start drafting the code:

1 # list containing the numbers to sum list containing the numbers to sum
2 numbers = [] numbers is assigned empty list
3
4 # ask the user for an integer ask the user for an integer
5 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
6
7 # as long as the number is positive as long as the number positive
8 while numbers >= 0: while number is greater than or

equal to zero
9
10 # if the number is multiple of 3 if the number is multiple of 3
11 if numbers % 3 == 0: if number modulus three is equal to

zero:
12 # add the number to the list add the number to the list
13 numbers.append(number) numbers dot append number
14
15 # ask for the next integer ask for the next integer
16 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

17
21 # print the list of multiples of 3 print the list of multiples of 3
19 print(numbers) print numbers
20
21 # initialize the sum to 0 initialize the sum to zero
22 sum_of_numbers = 0 sum of numbers is assigned zero
23

145

Part 5. The while loop and conditions

24 # calculate the sum of numbers calculate the sum of numbers
25 for i in range (len(numbers)): for i in range len of numbers
26 sum_of_numbers = numbers[i] +

sum_of_numbers
sum of numbers is assigned numbers
in position i plus sum of numbers

27
28 # print the final sum print the final sum
29 print("The sum of the multiples of 3 is: +

str(sum_of_numbers))
print The sum of the multiples of
3 is: concatenated with str sum of
numbers

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1
[3, 6]
The sum of the entered multiples of 3 is: 9

We can create an empty list called numbers that will contain the multiples of 3 (line 2). Then, within
the while loop, we add an if construct, in which we check whether the current number is a multiple

of 3 by using the modulo operator. If the condition is met, then we append the number to the list

numbers (line 13). At the end of the while loop (i.e., after the player has entered a negative number),
we sum up the numbers in the list, similarly to what we did in the exercise 5 of Chapter 14. First,

we create the variable sum_of_numbers, which will contain the final sum, and we initialize it to zero
(line 22). Then, we use a for loop through the list numbers—containing the multiples of 3—to add the
current list element (numbers[i]) to the amount in sum_of_numbers (line 26). Finally, we print out the
sum at line 29.

We solved the task, but can we improve our code? Let’s read the following requirement again: at the

end, print the sum of all entered integers that are multiples of 3. We are not asked to save the multiples

of 3 in a list—just to print out their sum. Do we need to create the list? Not really! So, how do we do

it? Let’s see this alternative solution:

[3]: 1 # initialize the sum to 0 initialize the sum to zero
2 sum_of_numbers = 0 sum of numbers is assigned zero
3
4 # ask the user for an integer ask the user for an integer
5 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
6
7 # as long as the number is positive as long as the number positive
8 while numbers >= 0: while number is greater than or

equal to zero
9
10 # if the number is a multiple of 3 if the number is a multiple of 3
11 if numbers % 3 == 0: if number modulus three is equal to

zero:
12 # add the number to the sum add the number to the sum
13 sum_of_numbers += number sum of numbers is incremented by

number
14
15 # ask for the next integer ask for the next integer
16 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

17

146

Chapter 18. Animals, unique numbers, and sum

18 # print the final sum print the final sum
19 print("The sum of the multiples of 3 is: +

str(sum_of_numbers))
print The sum of the multiples of
3 is: concatenated with str sum of
numbers

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1
The sum of the entered multiples of 3 is: 9

We remove all the code related to the list numbers. We initialize sum_of_numbers to zero before the
while loop (line 2). Then, within the loop, we sum the current multiple of 3 (i.e., number) to the total
sum (line 13)—without saving it to a list. With this trick, we improve our code in two ways: (1) we do

not create a list, which occupies space in computermemory, and (2) we avoid a for loop that occupies

memory and time during the execution. The code thus becomes shorter, faster, andmore elegant.

Match the sentence halves
In coding there are three constructs: if/else constructs, for loops, and while loops. Review their

definitions in the following exercise:
1. An if/else construct checkswhether a con-

dition is true or false

a. for a determined number of times

2. A for loop is the repetition of a group of

commands

b. as long as a condition holds

3. A while loop is the repetition of a group of

commands

c. and executes code accordingly

Recap

• In a while loop header, we can write various kinds of conditions. The correct condition is the one

that keeps the loop going (not stopping!)

• When solving a task, it is common to decompose and analyze the requirements, solve the subtasks,

andmerge the code to the solution (divide and conquer!)

• When coding, we often write a first draft, and then we improve the draft to make the code faster

and robust (writing code is like writing an email!)

Don’t confuse the while loop with if/else!

When learning coding constructs, it can be easy to confuse the while loop with with the if/else

construct. If thishappened toyouwhile learning thepast twochapters, read the followingpara-

graph. If you feel like you mastered the difference between while loops and if/else constructs,

feel free to skip the coming lines!

Consider the following example, similar to the first one in this chapter.

147

Part 5. The while loop and conditions

• Given the following list:

[1]: 1 fruits = ["mango", "orange", "banana"] fruits is assigned mango, orange,
banana

• Create a game where the computer randomly picks a fruit and the player has to guess the

fruit picked by the computer. Make sure that the player keeps playing until they guess the

fruit picked by the computer.

We have to solve 3 tasks: (1) the computer randomly picks a fruit, (2) the player has to guess

the fruit picked by the computer, and (3) wemustmake sure that the player keeps playing until

they guess the fruit picked by the computer. The first two requirements are straightforward,

andwewill solve them quickly. Wewill focus on the third requirement.

1. The computer randomly picks a fruit.

[2]: 1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(fruits) computer pick is assigned random

dot choice fruits
5

Weimport thepackagerandom(line1)andweuse themethod.choice() tomakethecomputer
randomly pick an element of the list fruits.

2. The player the has to guess the fruit picked by the computer.

6 # player guess player guess
7 player_guess = input ("Guess the fruit!

Choices: mango, orange, banana: ")
player guess is assigned input
Guess the fruit! Choices: mango,
orange, banana:

8

Weuse the built-in function input() to ask the player to enter a fruit (line 7).

3. Make sure that the player keeps playing until they guess the animal picked by the computer. The

first instinct would be to do the following:

9 # check the player guess check the player guess
10 if player_guess == computer_pick: if player guess is equal to

computer pick
11 print("That's right! The fruit is " +

computer_pick)
print That's right! The fruit is
concatenated with computer pick

10 else: else
11 print("Nope! Try again!") print Nope! Try again!

We check if player_guess is equal to computer_pick with an if/else construct, and we print
messages accordingly (lines 9–11). If the player did not guess the right fruit, we have to ask

them to guess again (like at line 7). Then, we have to check once more if the guess is correct

(like at lines 9–11), and so on. This is not feasible because we cannot know howmany times it

is going to take the player to guess the correct fruit! In addition, we would repeat code, which

means that we can use a loop! So, here is the correct solution with the while loop:

148

Chapter 18. Animals, unique numbers, and sum

9 while player_guess != computer_pick: while player guess is not equal to
computer pick:

10 # as long as the player's guess and the computer's pick are different
not right

as long as the player's guess and
the computer's pick are different

11 player_guess = input ("Nope! Try again!
Guess the fruit! Choices: mango, orange,
banana: ")

player guess is assigned input
Nope! Try again! Guess the fruit!
Choices: mango, orange, banana:

As long as the player_guess is not equal to computer_pick (line 9), we ask the player to make a
guess (line 11), which we check in the condition of the while loop header (line 9), and the loop

keeps going as long as the condition holds.

Let’s code!

1. Guess the number! Create a gamewhere the computer picks a number between 0 and 10, and the

player has to guess it. If the player guesses a number that is toohighor too low, then the computer

tells the player. The game stops when the player guesses the number. At the end, tell the player

howmany attempts it took to guess the number.

2. 12 even random numbers. Create a list of 12 even random numbers between 0 and 30. Howmany

odd numbers did you exclude?

3. Spelling game for kids. Create a game that helps kids learn spelling. The game has the following re-

quirements: (1) Create a list ofwords to be spelled. Among thesewords, choose aword randomly,

and tell the kid the chosen word (e.g., “Spell the word ‘hello’”). (2) The kid has to enter one letter

at the time. If the kid enters the correct letter, then provide positive reinforcement (e.g., “Well

done!”), and ask for the next letter. If the kid does not enter the correct letter, then tell them that

the letter is not correct, and ask for a letter again.

Challenge 1: Instead of creating only 1 list of words, create 3 lists, one per topic, so that the kid

can choose a topic before spelling a word.

Challenge 2: The game continues as long as the kid wants to spell a newword.

149

19. And, or, not, not in
Combining and reversing conditions

Up to now, we have considered only one condition in if/else constructs and while loops. What if we

need more than one condition? And what if we need to reverse a condition? In this chapter, we will

learn how to combine or reverse conditions using the logical operators and, or, not, and themember-
ship operator not in. As usual, try to solve the tasks yourself before looking at the solutions, which
you can also find in Notebook 19. Let’s start!

1. and

• Given the following list of integers:

[1]: 1 numbers = [1, 5, 7, 2, 8, 19] numbers is assigned one, five, seven,
two, eight, nineteen

• Print out the numbers that are between 5 and 10:

[2]: 1 # for each position in the list for each position in the list
2 for i in range (len(numbers)): for i in range len of numbers
3
4 # if the current number is between 5

and 10
if the current number is between
five and ten

5 if numbers[i] >= 5 and numbers[i] <= 10: if numbers in position i greater
than or equal to five and numbers in
position i less than or equal to ten

6
7 # print the current number print the current number
8 print ("The number " + str(numbers[i])

+ " is between 5 and 10")
print The number concatenated with
str numbers in position i concatenated
with is between five and ten

The number 5 is between 5 and 10
The number 7 is between 5 and 10
The number 8 is between 5 and 10

We use a for loop to browse all the elements in the list (line 2). Then, we check if each number is

between 5 and 10 (line 5). To be in between two numbers, a number must be greater than or equal

to the smaller number and smaller than or equal to the greater number. The two conditions (greater

thanor equal to and smaller than or equal to)must be valid at the same time. To check if two (ormore)

conditions are valid simultaneously, we join them using the logical operator and.

We use the logical operator andwhenwewant to check
whether all conditions are valid

Let’s look at the syntax. For each condition both before and after the logical operator and, we have to
write: (1) avariable (e.g.,numbers[i]), (2) acomparisonoperator (e.g.,>=), and (3)a termofcomparison

(e.g., 5). At the end of the code, we print the numbers that satisfy both conditions (line 7).

150

Chapter 19. And, or, not, not in

2. or

• Given the following string:

[3]: 1 message = "Have a nice day!!!" message is assigned Have a nice day!!!

• And given all punctuation:

[4]: 1 punctuation = "\"\/'()[]{}<>.,;:?!^@∼#$%&*_-" punctuation is assigned
\"\/'()[]{}<>.,;:?!^@∼#$%&*_-

The string punctuation contains all punctuation on a Latin alphabet keyboard. Compare the sym-
bols with the ones on your keyboard and note whether there are additional ones! If so, add them to

punctuation in Jupyter Notebook 19! The symbols at the beginning of the string punctuation "\"\/
might be abit confusing, so let’s disentangle them. Thefirst quote "\"\/ is the symbol that introduces
the string. The following two symbols "\"\/ are special characters—youmight remember the special
character "\n", which is used to go to a new line (Chapter 12). The backslash \ tells Python that the
following quote " is an actual backslash character and not the symbol that we use to close a string.
The last backslash "\"\/ is an actual backslash because the following forward slash / is not a special
character.

• Print and count the number of characters that are punctuation or vowels:

[5]: 1 # string of vowels string of vowels
2 vowels = "aeiou" vowels is assigned aeiou
3
4 # initialize counter initialize counter
5 counter = 0 counter is assigned zero
6
7 # for each position in the message for each position in the message
8 for i in range (len(message)): for i in range len of message
9
10 # if the current element is punctuation

or vowel
if the current element is
punctuation or vowel

11 if message[i] in punctuation or
message[i] in vowels:

if message in position i in
punctuation or message in position
i in vowels

12
13 # print a message print a message
14 print (message [i] + " is a vowel

or a punctuation")
print message in position i
concatenated with is a vowel or a
punctuation

15
16 # increase the counter increase the counter
17 counter += 1 counter is increased by one
18
19 # print the final amount print the final amount
20 print("The total amount of punctuation or

vowels is " + counter)
print(The total amount of punctuation
or vowels is concatenated with
counter

a is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation

151

Part 5. The while loop and conditions

i is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation
The total amount of punctuation or vowels is 9

Similarly towhatwedid for punctuation, we create a string containing vowels (line2). Wealso create

a counter,whichwewill use to calculate thenumberof characters that arepunctuationorvowels, and

we initialize it to zero (line 5). Then, we get to the core of the solution! We use a for loop to browse

all the characters in the string message (line 8). For loops for strings work exactly the same way as

for loops for lists. In the loop body, we check if each character is a punctuation or a vowel by using

the membership operator in (line 11), which we learned in Chapter 3. More specifically, we check

if message[i] is in the string punctuation or in the string vowels. Note that as for the for loop, the
membership operator in works for strings the same way as it works for lists. Since only one of the
conditions can be valid (a character cannot be both a punctuation and a vowel at the same time!), we

merge the two conditions—that is, message[i] in punctuation or message[i] in vowels—using the
logical operator or.

We use the logical operator orwhenwewant to check
whether at least one condition is valid

The syntax is the sameas for the logical operator and: weneed towrite (1) a variable, (2) a comparison
operator, and (3) a term of comparison both before and after or. To conclude the loop body, we print a
message for the characters that satisfy at least one condition (line 14), andwe increment the counter

by one unit (line 17). At the end of the loop, we print the final number of characters that are vowels

or punctuation (line 20).

3. not

• Given the following list of integers:

[7]: 1 numbers = [4, 6, 7, 9] numbers is assigned four, six, seven,
nine

• Print out the numbers that are not divisible by 2:

[8]: 1 # for each position in the list for each position in the list
2 for i in range (len(numbers)): for i in range len of numbers
3
4 # if the current number is not even # if the current number is not even
5 if not numbers[i] % 2 == 0: if not numbers in position i modulo

two equals zero
6
7 # print the current number print the current number
8 print (numbers[i]) print numbers in position i
7
9

152

Chapter 19. And, or, not, not in

For each position in the list (line 2), we have to checkwhether the number is not even. For amoment,

let’s think about the opposite: what conditionwouldwewrite ifwehad to checkwhether thenumber

is even? if numbers[i] % 2 == 0. To negate a condition, we just add the logical operator not before
the condition—more specifically, before the variable at the beginning of the condition (line 5).

We use the logical operator notwhenwewant to check
whether the opposite of a condition is valid

If the condition is satisfied, thenwe print the number (line 8).

Is this the only way to solve this task? Maybe the first idea you had in mind was more similar to this

one:

[8]: 1 # for each position in the list for each position in the list
2 for i in range (len(numbers)): for i in range len of numbers
3
4 # if the current number is odd # if the current number is odd
5 if numbers[i] % 2 != 0: if numbers in position i modulo two is

not equal to zero:
6
7 # print the current number print the current number
8 print (numbers[i]) print numbers in position i
7
9

For each position in the list (line 2), we checkwhether the remainder of numbers[i]divided by 2 is not
equal to 0 (line 5). If so, thenwe print the number (line 8).

What solution is better? It’s amatter of preference! If you are undecided, pick the solution that looks

like the simplest to you, both in termof syntax and reasoning. In coding, there are often variousways

of solving a task. Keeping the solution simple favors readability and understanding.

Last note about conditions: when combining conditions, we need to follow a precise order, similarly

to what we dowith arithmetic operators (see Solving arithmetic expressions in Chapter 13). The order

fromhighest to lowest precedence is: not, and, or (easy-to-memorize acronym: NAO).When you are

uncertain, write the condition to prioritize within round brackets ().

4. not in

• Generate 5 random numbers between 0 and 10. If the random numbers are not already in the fol-

lowing list, then add them:

[9]: 1 numbers = [1, 4, 7] numbers is assigned one, four, seven

[10]: 1 import random import random
2

153

Part 5. The while loop and conditions

3 # for five times for five times
4 for _ in range (5): for underscore in range five
5
6 # generate a random number between 0 and 10 generate a random number between zero

and ten
7 number = random.randint(0, 10) number is assigned random dot randint

zero ten
8 # print the number as a check print the number as a check
9 print (number) print number
10
11 # if the new number is not in numbers if the new number is not in numbers
12 if number not in numbers: if number not in numbers:
13 # add the number to numbers add the number to numbers
14 numbers.append(number) numbers dot append number
15
16 # print the final list print the final list
17 print (numbers) printnumbers
6
6
10
7
9
[1, 4, 7, 6, 10, 9]

We start by importing the package random (line 1). Then, we create a for loop that runs for five times
(line 4)—note the underscore instead of the variable i because we will not need any index in the for
loop body (seeWhat if I don’t use the index in a for loop? in Chapter 15). Then, we create a randomvari-

able (line 7) and print it as a check (line 9). To evaluate if the variable number is not already in the list
numbers (line 12), we use themembership operator not in, which is the opposite of themembership
operator in (Chapter 3). If the condition is met, then we append the randomly generated number to
the list of numbers (line 14). Finally, we print the completed list (line 17).

Insert into the right column
Younowknowallmembership, comparison, and logical operators. Insert each symbol in the right col-

umn:

<, or, in, !=, not, >, ==, not in, >=, and, <=

Membership operators Comparison operators Logical operators

154

Chapter 19. And, or, not, not in

Recap

• The logical operators are and, or, and not
• When combining conditions, the order of execution is not, and, or (NAO)
• Themembership operators are in and not in

What is GitHub?
You might have heard about GitHub, or you might have browsed some pages on its site

(github.com). Surely, you have checked the solutions of the exercises of this book on GitHub!

But what is GitHub exactly? In a simplified manner, we can think of GitHub as a cloud service

or a huge server for code. Instead of using Dropbox, Google Drive, etc., coders prefer to syn-

chronize their code with GitHub. GitHub has its own language: folders are called repositories,

sending files to the server is called a push, and getting files from the server is called a pull. Each

repository contains files—they can store any files, either containing code or not—and elements

that are specific to coding, such as issues, where anybody can indicate bugs to be solved or sug-

gest new features. Whydocoders useGitHub insteadof other cloud services? BecauseGitHub

supports version control, that is, it keeps track of code changes over time. Every time we

push a code update, we can compare it with previous version(s), and if the new code does not

work, thenwecangoback toanearlier version. Furthermore,GitHub is useful for collaborative

projects: programmers canwork on different sections of a task individually and then integrate

the codewithout accidentally influencing eachother’s code, allwhile keeping trackof eachpro-

grammer’s contribution. These tasksareactually executedbyGit, which is adistributedversion

control system, that is, a software thatmanages changes to code. Other platforms that employ

Git includeGitLab (gitlab.com) and Bitbucket (bitbucket.org), withGitHub being themost pop-

ular.

Let’s code!

1. The Zen of Python. Solve the following 4 steps, and youwill discover the Zen of Python!

a. Given the following list of strings:

strings_to_slice = ["reisk", "kpan", "xfsimpleg", "bosolutionb", "pobetterx",
"weorb", "ofworsep", "aathanx", "hoau", "hfcomplexx", "poors", "opcomplicatedx",
"rwsolutions", "re?o"]
Create anew list called sliced_strings containing the same strings butwithout thefirst two
letters and the last letter (Example: "gfhio"will become "hi").

b. Given the following list of strings:

strings_to_invert= ["emos", "elpoep", "kniht", "taht", "xelpmoc", "ro",
"detacilpmoc", "si", "retteb", "naht", "elpmis"]
Create an new list called inverted_strings containing the same strings but inverted (Exam-
ple: "ih"will become "hi")

155

Part 5. The while loop and conditions

c. Given the following list of strings:

strings_to_pick = ["this", "sounds", "simple", "but", "is", "it?", "some",
"things", "look", "better", "than", "when", "complex", "but", "complex",
"again", "is", "worse", "better", "than", "complicated", "I'm", "confused"]
Find thewords that are present both in sliced_strings and inverted_strings, change them
to uppercase, and add them to a new list. What sentence do you get?

d. Where does the obtained sentence come from? Run the following Python command: import
this

2. Playing with numbers. Given the following list of numbers:

numbers = [7, 9, 15, 19, 24, 30, 37, 45, 50]
a. Print the numbers that are divisible by 3 and 5.

b. Print the numbers that are divisible by 3 or 5.

c. Print the numbers that are divisible by 3 but not 5. Perform this task in two different ways,

once using not, and once without using not.

3. Upgrading Rock, paper, scissors. In Chapter 16, we implemented rock, paper, scissors. In that ver-

sion, thereweremany repetitions. In coding, we usually do notwant repetitions because they can

invite errors. How can we make the code less repetitive? By combining conditions! What con-

ditions can you combine in this game? Rewrite rock, paper, scissors in a more succinct way using

logical operators. After you have optimized the code, make it a real game by adding a while loop

that allows players to play as long as theywant. Hint: Instead of thinking in terms of computer and

player choices, think in terms of outcomes, i.e., tie and the player’s (or the computer’s) win.

156

20. Behind the scenes of comparisons and con-
ditions
Booleans

It’sfinally timetounveilwhat’sbehindcomparisonsandconditions! WhatdoesPython“see”whenwe

write a comparison or a condition? Let’s find it outwith the code below! Follow alongwithNotebook

20.

1. Single comparison or condition

• Given the following assignment:

[1]: 1 number = 5 number is assigned five

• What is the outcome of the following comparison operation?

[2]: 1 print (number > 3) print number is greater than three
True

The printed value is True. In fact, it is true that 5 is greater than 3! But what is True? A string? A

variable? Let’s figure it out in the next cell!

• Assign the above operation to a variable and print it. What type is it?

[3]: 1 result = number > 3 result is assigned number is greater than three
2 print (result) print result
3 type (result) type result
True
bool

Weassign the result of the comparison operation number > 3 to the variable result (line 1). Then,we
print result (line 2) and we get True—like in cell 2. Finally, we print the outcome of type(result) to
determine the typeof thevariableresult (line3)—wementionedthebuilt-in functiontype() inChap-
ter 13. We say that the variable result is of type Boolean and its value is True. Booleans are a data
type exactly like strings, lists, integers, etc.

Let’s continue our exploration of what lies behind comparisons and conditions. Let’s look at this ex-

ample:

• What is the outcome of the following comparison operation?

[4]: 1 print (number < 3) print number is less than three
False

This time, the print is False. Obviously, 3 is not smaller than 5. Let’s continue, similarly to what we
did in cell 3.

157

Part 5. The while loop and conditions

• Assign the above operation to a variable and print it. What type is it?

[5]: 1 result = number < 3 result is assigned number is less than three
2 print (result) print result
3 type (result) type result
False
bool

Weassign the output of the comparison operation number < 3 to the variable result (line 1), andwe
print it (line 2), obtaining False, like in cell 4. Then, we print the type of the variable result (line 3)
andwe get `bool', like we did for True.

Booleans are a variable type. They can have only two values: True or False

Whenwewrite conditions in an if/else construct or in a while loop header, Python “reads” the result

behind the conditions: that is, True or False. For example, whenwewrite:

1 if numbers > 3: if number is greater than three
2 print ("Correct!") print Correct

Python “sees”:

1 if True: if True
2 print ("Correct!") print Correct

2. Combining comparisons or conditions
Let’s take the operation a step further and see what happens whenwe combine conditions.

• What is the outcome of the following comparison operations?

[6]: 1 number = 3 number is assigned 3
2 print (number > 1) print number is greater than one
3 print (number < 5) print number is less than five
4 print (number > 1 and number < 5) print number is greater than one and number is

less than five
True
True
True

We assign 3 to the variable number (line 1). Then, we print the outcome of three comparison oper-
ations. For all operations—number > 1 (line 2), number < 5 (line 3), and number > 1 and number <
5 (line 4)—the outcome is True. Let’s focus on line 4, where we combine two comparison operations
with the logical operator and. For these combined operations, Python “sees”:

4 print (True and True): print True and True
True

Aswe can see, the output of two True conditions combined by the logical operator and is True.

158

Chapter 20. Behind the scenes of comparisons and conditions

• What happens if we change the first condition to be false?

[7]: 1 number = 3 number is assigned 3
2 print (number > 4) print number is greater than four
3 print (number < 5) print number is less than five
4 print (number > 4 and number < 5) print number is greater than four and number is

less than five
False
True
False

The first condition is now False because 3 is not larger than 4 (line 2), whereas the second condition
is still True (line 3). The combination of the False condition from line 2 with the True condition from
line 3 returns False (line 4). In this last case, Python “sees”:

4 print (False and True): print False and True
False

Thus, the output of one True and one False conditions merged by the logical operator and is False.
Let’s continue analyzing the remaining combinations!

• What happens if we change the second condition to be false?

[8]: 1 number = 3 number is assigned 3
2 print (number > 1) print number is greater than one
3 print (number < 2) print number is less than two
4 print (number > 1 and number < 2) print number is greater than one and number is

less than two
True
False
False

Thefirst condition is True (line2)—like itwas in cell 6—whereas the second condition is now Falsebe-
cause 3 is not smaller than 2 (line 3). Similarly to cell 7, the combination of one True condition and one
False condition (line 4) returns False. In this case, Python “reads”:

4 print (True and False): print True and False
False

We can deduce that the output of one False and one True conditions merged by the logical operator
and is always False, regardless of the order of the conditions.

• Finally, what happens if we change both conditions to be false?

[9]: 1 number = 3 number is assigned 3
2 print (number > 4) print number is greater than four
3 print (number < 2) print number is less than two
4 print (number > 4 and number < 2) print number is greater than four and number is

less than two
False
False
False

159

Part 5. The while loop and conditions

Both conditions are False because 4 is neither larger than 4 (line 2) nor smaller than 2 (line 3). The
combination of the two conditions is False too (line 4). This is what Python “sees”:

4 print (False and False): print False and False
False

We can summarize the outcome of combinations of conditions using the logical operators and in a
truth table:

First condition Second condition First condition and Second condition

(1) True True True

(2) False True False

(3) True False False

(4) False False False

Row1 corresponds to the examplewe saw in cell 6, where both conditionswere True, and their com-
bination was also True. We can pronounce the first row as True and True gives True. Row 2, where

True and False gives False, corresponds to the example in cell 7. Row 3—False and True gives False—

corresponds to the example at cell 8. Finally, row 4 corresponds to the example in cell 9, where False

and False gives False. When youwrite code that combines conditions using and, you can use this table
as a reference to determine the outcome!

What happenswhenwe combine conditions using the logical operator or? Here is the truth table for
or:

First condition Second condition First condition or Second condition

(1) True True True

(2) False True True

(3) True False True

(4) False False False

For the logical operator or, True and True gives True (row 1), False and True gives True (row 2), True and

False gives True (row 3), and False and False gives False (row 4).

What are the similarities and differences between the and and or truth tables? The columns for the
first and second conditions are the same for both tables, but the results change. For and, the result
is True only when both conditions are True, and it is False in all other cases. Conversely, for or, the
result is False only when both conditions are False, and it is True for all other cases. A side note: In

other textbooks or on the Internet, youmight find that the columns of the first and second condition

are inverted. But the results remain the same!

Let’s conclude with the truth table for the logical operator not. Here it is:

Condition not condition

(1) True False

(2) False True

not inverts conditions. When wewrite not in front of True condition, it becomes False (row 1). Con-

versely, whenwewrite not in front of a False condition, it becomes True (row 2).

160

Chapter 20. Behind the scenes of comparisons and conditions

Create your examples
In a notebook, write an example for each row of the or truth table and of the not truth table, similar
to what we did above for and.

3. Where else do we use Booleans?
Booleans are often used as flags in while loops. What does this mean?

• Look at this modified version of the exampleDo you want more candies? fromChapter 17:

[13]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # use a Boolean as a flag use a Boolean as a flag
5 flag = True flag is assigned True
6
7 # print the initial number of candies print the initial number of candies
8 print ("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

9
10 # as long as the flag is True as long as the flag is True
11 while flag == True: while flag equals True
12
13 # ask if they want a candy ask if they want a candy
14 answer = input ("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

15
16 # if the answer is yes if the answer is yes
17 if answer == "yes": if answer equals yes
18
19 # add a candy add a candy
20 number_of_candies += 1 number_of_candies is incremented by one
21
22 # print the total number of candies print the total number of candies
23 print ("You have " +

str(number_of_candies) + " candies")
print You have concatenated with str
number of candies concatenated with
candies

24
25 # if the answer is not yes if the answer is not yes
26 else: else
27
28 # print the final number of candies print the final number of candies
29 print ("You have a total of " +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

30
31 # stop the loop by assigning False to

the flag
stop the loop by assigning False to the
flag

32 flag = False flag is assigned False

161

Part 5. The while loop and conditions

Find the differences
Can you identify somedifferences between thewhile loop in the example above and the one inChap-

ter 17?

As you might remember from Chapter 17, for a while loop, we have to create a variable that is: (1)

initialized before the header, (2) included in a conditionwithin the header, and (3) allowed to change in

the body to avoid infinite iterations. In the example in Chapter 17, the variable following these three

ruleswas answer. In this example, it is flag. We initialize flag as a Boolean of value True (line 5), then
we check if its value is equal to True in thewhile loopheader (line 11), andfinallyweallow it to change

to False (line 32) to avoid infinite loops. flag is a common variable name for a Boolean variable that
behaves this way—counter is another typical variable name for a variable that keeps count of the
number of iterations. We can think of a flag variable like a traffic light that makes the loop continue

or stop. As long as the traffic light is green (i.e., flag is True), the loop will continue. When the traffic

light changes to red (i.e., flag is assignedFalse), the loopends. UsingaBooleanflag in thewhile loop is
somewhat like providing the answer to a condition instead of asking the header to test the condition.

When using a flag, the construction of a while loopmight change. What about the variable answer in
this new code version? We initialize answer at the beginning of thewhile loop body, whereweuse the
built-in function input to ask a question to the player (line 14). Then we create an if/else condition
to decide what to do based on the value of answer (lines 17–32). If the answer is "yes", then we in-
crement the counter number_of_candies by 1 (line 20) andwe print a feedback to the player (line 23).
Otherwise (i.e., else), we print a final feedback to the player (line 29) andwe allow the flag to change

(line 32).

These are several ways to write a while loop. Which one should we use? All have pros and cons.

Choose the one that appears simpler and easier to understand!

Recap

• Whenwewrite a comparison or a condition, the outcome is a Boolean variable

• Booleans are a Python type, like lists, strings, integers, etc.

• There are only 2 Boolean values: True and False

• Combinations of conditions using and, or, not follow the truth tables

• Booleans can be used as flags in while loops (they act like traffic lights)

162

Chapter 20. Behind the scenes of comparisons and conditions

What is the difference between GeeksforGeeks and Stack Overflow?
There are several online resources for coding. What are the differences among them? How

do we choose which to use? In a simple manner, we can categorize websites into two groups:

tutorial websites and question and answer (Q&A) websites. In tutorial websites, each page

contains clear and extensive explanations about a specific topic. Common website tutori-

als are GeeksforGeeks (www.geeksforgeeks.org),W3Schools (www.w3schools.com), or learn-

python.org (www.learnpython.org). The last two also offer the possibility of typing code di-

rectly in theirwebpages so that you can immediately testwhat you learn. On the other hand, in

Q&Awebsite, each page starts with a question by a user, followed by answers by other users.

Usually, questions are about solving bugs or looking for better code implementations. Exam-

ples include StackOverflow (www.stackoverflow.com) orReddit (www.reddit.com). Q&Aweb-

sites are extremely useful for coders. We all encounter issues thatwe don’t knowhow to solve.

The great news is that there is always somebody else who had the same issue before us and

whose solutions we can find online!

Let’s code!

1. Do you want less exercises? Rewrite the while loop from the exercise Do you want less exercises? in

Chapter 17 using a Boolean as a flag in the header.

2. Flipping coins! When flipping a coin, we have two outcomes: heads and tails. In this exercise, we

will use True for heads and False for tails. Flip a coin 8 times and save the outcomes in a listwhose
elements are of type Boolean. How many outcomes of heads and tails did you get? What is the

ratio between the number of heads and tails? Now flip a coin 1000 times. What is the new ratio?

How do the two ratios differ?

3. Comparator. A comparator is an algorithm that compares twonumbers. It is similar to a calculator,

but insteadof using arithmetic operators, it uses comparisonoperators. Create a comparator that

asks a user for two integers and prints all the possible comparisons between the two integers.

Example: If the user enters 3 and 5, then print out:

3 > 5 is False

3 < 5 is True

etc.

Make sure to: (1) use all the comparison operators; (2) use Booleans wherever possible; and (3)

allow the user to use the comparator for as long as theywant. Which numbers did you use to test

that the comparator works correctly? When do you get True as an output?

163

www.geeksforgeeks.org
www.w3schools.com
https://www.learnpython.org/
www.stackoverflow.com
www.reddit.com

PART 6
FOCUS ON LISTS
AND FOR LOOPS
In this part, you will integrate your existing knowledge of lists and for loops with new concepts and

properties. At the end of part 6, youwill have fully mastered lists and loops!

21. Overview of lists
Operations, methods, and tricks

We are halfway through our journey of learning computational thinking and coding in Python! Thus,

this is a goodmoment to take a break and summarize everythingwehave learned about lists so far. In

thisChapter,wewill put the “grammar” rules forPython lists touseandhighlight somenew important

properties that are worth knowing. The Chapter contains a lot of examples and details that will help

you improve your coding skills and understand other people’s code. Let’s start! Follow along with

Notebook 21!

1. Arithmetic operations on list elements
As you might remember from Chapter 13, in Python there are 7 arithmetic operations: addition (+),
subtraction (-), multiplication (*), exponentiation (**), division (/), floor division (//), and modulo (%).
To perform arithmetic operations element-wise—that is, on list elements—we use for loops. Element-

wise operations can be done (1) between two or more lists of the same length or (2) between a list

and a number. In both cases, we use a for loop. Let’s see two examples for addition (but they can be

valid for any operation).

• Sum two lists element-wise:

[1]: 1 odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five
2 even_numbers = [2, 4, 6] even_numbers is assigned two, four, six
3 summed = [] summed is assigned empty list
4
5 for i in range (len(odd_numbers)): for i in range len odd numbers
6 summed.append(odd_numbers[i] +

even_numbers[i])
summed dot append odd_numbers in position i
plus even numbers in position i

7
8 print (summed) print summed
[3, 7, 11]

We start with odd_numbers and even_numbers, which are two lists containing 3 integers each (lines 1
and2), andsummed,whichwe initializeasanempty list (line3). Then,wecreatea for loopthat spans the
indices of oneof the lists of numbers (line 5), andweappend to summed the sumof the current element

of the list odd_numbers to the element in the same position in the list even_numbers (line 6). Finally,
we print the result for a check (line 8). Note that we save the result in a third list (summed) that we
initialized as emptybefore the loop (line3) and thatwefill in during the loop (line6). Ifwedonotwant

to create a third list, we can overwrite one of the existing lists (e.g., odd_numbers[i]=odd_numbers[i]
+ even_numbers[i]).

• Sum a number to each element of a list:

[2]: 1 numbers = [1, 2, 3] odd_numbers is assigned one, two, three
2 number = 3 number is assigned three
3

167

Part 6. Focus on lists and for loops

4 for i in range (len(numbers)): for i in range len of numbers
5 numbers[i] += number numbers in position i incremented by number
6
7 print (numbers) print numbers
[4, 5, 6]

We create the list numbers containing three integers (line 1) and the variable number to which we as-
sign the number 3 (line 2). Then, we use a for loop to browse all the positions of the list elements (line
4), and we increase each element by the value of number (line 5). Finally, we print the result (line

7). Similar to the previous example, we can either overwrite the existing list (as we do in this exam-

ple) or we can create an empty list before the for loop (e.g., summed = []) and fill it in the loop (e.g.,
summed.append(numbers[i] + number)).

2. “Arithmetic” operations between lists
The operations between lists are not actually arithmetic, but they use arithmetic symbols with a dif-

ferent meaning. The two possible operations are concatenation, which uses the symbol +
(pronouncedas concatenatedwith)and replication, whichuses the symbol * (pronouncedas replicated
by [number]). Let’s see the examples:

• Concatenate two lists:

[3]: 1 odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five
2 even_numbers = [2, 4, 6] even_numbers is assigned two, four, six
3 concatenated = odd_numbers + even_numbers concatenated is assigned odd numbers

concatenated with even numbers
4 print (concatenated) print concatenated
[1, 3, 5, 2, 4, 6]

Wecreate two lists, one containing odd numbers (odd_numbers; line 1) and one containing even num-
bers (even_numbers; line 2). Thenwe concatenate themusing the concatenation symbol + (line 3), and
we store the result in a new list called concatenate (line 3). If we don’t want to create a new variable,

we can overwrite one of the two existing lists: odd_numbers = odd_numbers + even_numbers. Finally,
weprint the result (line4),which is a list containing theelementsofodd_numbersandeven_numbers se-
quentially merged.

• Replicate a list 3 times:

[4]: 1 numbers = [1, 2, 3] odd_numbers is assigned one,two,three
2 number = 3 number is assigned three
3 replicated = numbers * number replicated is assigned numbers replicated

by number
4 print (replicated) print replicated
[1, 2, 3, 1, 2, 3, 1, 2, 3]

Wecreate a list called numbers (line1) and an integer variable called number (line2). Thenwe replicate
the list numbers by the number of times indicated by the variable number using the symbol *, and we
save the result in a new list called replicated (line 3). Oncemore, instead of creating a new variable,

we can overwrite the existing list: numbers = numbers * number. Finally, we print replicated (line

4). As you can see in the printout, replicated contains the list numbers repeated three times. When

168

Chapter 21. Overview of lists

is replication useful? Let’s see the following example:

[5]: 1 short_list = [0] short_list is assigned zero
2 number = 50 number is assigned fifty
3 long_list = short_list * number long list is assigned short list

replicated by number
4 print (long_list) print long_list
[0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We initialize short_list as a list containing one zero (line 1) and the variable short_list containing
the value 50 (line 2). Then, we replicate short_list by the number of times indicated by number (line
3), and we store the result in the variable long_list. Finally, we print long_list (line 4). As you can
see, we obtained a list containing 50 zeros. If we had created long_listmanually, it would have been
very tedious, andwe could have easilymiscounted thenumber of zeros in the list! Finally, note that in

alternative to create the variables short_list and number, we can directly write: long_list=[0]*50.

3. List assignment
Whenwe assign a list to another list, we have to be very careful! Let’s see why.

• Given a list containing a few integers:

[6]: 1 given_list = [1, 2, 3] given list is assigned one, two, three
2 print (given_list) print given list
[1, 2, 3]

We create a list called given_list containing some integers (line 1) andwe print it (line 2).

• Assign given_list to new_list:

[7]: 1 new_list = given_list new list is assigned given list
2 print (new_list) print new list
[1, 2, 3]

We assign given_list to another list called new_list (line 1), and we print it (line 2). As we can see,
new_list contains the same elements as given_list, as expected. Let’s go one step further!

• Change the first list element of new_list:

[8]: 1 new_list[0] = 40 new list in position zero is assigned
forty

2 print (new_list) print new list
[40, 2, 3]

Wechange the first element of new_list to 40 (line 1) andwe print new_list after the change (line 2).
As expected, the first element is now 40. What about given_list?

• Print given_list:

[9]: 1 print (given_list) print given list
[40, 2, 3]

The first element of given_list is also 40! This happens becausewhenwe assign a list to another, we
give twonames to the same list. It is abit likewhenapersonhas twonames: for example,mybrother’s

169

Part 6. Focus on lists and for loops

name is Flavio Alberto. Whether I call him Flavio or Alberto, he is always the same person!

• How canwe create an independent copy of a list?

[10]: 1 given_list = [1, 2, 3] given list is assigned one, two, three
2 new_list = given_list.copy() new list is assigned given list dot copy
3 new_list[0] = 40 new list in position zero is assigned

forty
4 print (given_list) print given list
5 print (new_list) print new list
[1, 2, 3]
[40, 2, 3]

Aswedid in cell 6, we create the list given_list that contains a fewnumbers (line 1). Then, instead of

assigning given_list to new_list (linewe did in cell 7), we use themethod .copy(), which creates an
independent copy of a list (line 2). Continuing the brother analogy, it is like if we created a twin that

is similar but independent, so that when we make changes, they happen only in the list we actually

change. At the end of the example, we change the first element of new_list to 40 like we did in cell 8
(line 3), andwe print out both lists (lines 4 and 5).

4. Adding one element or a list to a list
Wecanaddanelement to a list in twoways: eitherat theendusing themethod.append() (seeChap-
ter 4), or at a specific position using themethod .insert() (seeChapter 5). Let’s see two easy exam-
ples to refresh how themethods work.

• Add one element at the end of a list:

[11]: 1 numbers = [1, 2, 3] numbers is assigned one, two, three
2 numbers.append(4) numbers dot append four
3 print (numbers) print numbers
[1, 2, 3, 4]

We create the list numbers containing three integers (line 1), and we add the number 4 using the
method .append() (line 2). Then, we print number to check the result (line 3).

• Insert the number 2 in position 1:

[12]: 1 numbers = [1, 3, 4] numbers is assigned one, three, four
2 numbers.insert(1, 2) numbers dot insert at position one, two
3 print (numbers) print numbers
[1, 2, 3, 4]

We initialize a list containing the integers 1, 3, and 4 (line 1). At position 1, we insert the number
2 using themethod .insert(), which takes as arguments first the position and then the value of the
new element (line 2). Finally, we print out numbers (line 3).

There are two ways to add a list at the end of another list: concatenation (see cell 3 and another

example below) and the method .extend().

170

Chapter 21. Overview of lists

• Concatenate two lists:

[13]: 1 first_list = [1, 2, 3] first_list is assigned one, two, three
2 second_list = [4, 5, 6] second_list is assigned four, five, six
3 third_list = first_list + second_list third list is assigned first list

concatenated with second list
4 print (third_list) print third list
[1, 2, 3, 4, 5, 6]

Wecreate two lists, called first_listand second_list, towhichweassign some integers (lines1and
2). Then, we concatenate the two lists to obtain third_list (line 3). Finally, we print third_list (line
4).

• Add one list at the end of another list:

[14]: 1 first_list = [1, 2, 3] first_list is assigned one, two, three
2 second_list = [4, 5, 6] second_list is assigned four, five, six
3 first_list.extend(second_list) first list dot extend second list
4 print (first_list) print first list
[1, 2, 3, 4, 5, 6]

We use the same two lists as in cell 13 (lines 1 and 2), but we use the method .extend() to merge
them. The syntax for .extend() is (1) the list to which wewant to add another list (2) dot, and (3) the
added list in between round brackets (line 3). Then, we print themerged list (line 4).

What are the differences between concatenation and .extend()? Whenusing concatenation, we can

either create a new list (e.g., third_list = first_list + second_list), or we can add a list to an ex-
isting one (e.g., first_list = first_list + second_list). Instead, when using .extend(), we can
only modify the list to which we apply the method (i.e., first_list in cell 14). In addition, when us-
ing .extend(), we can add a list only at the end of another list, whereas when using concatenation—
combined with slicing—we can add a list at the beginning (e.g. first_list = second_list +
first_list) or in the middle of another list (e.g. first_list = first_list[:2] +
second_list + first_list[2:]).

5. Removing elements from a list
We can remove list elements either based on their value, using .remove() (see Chapter 4) or on their
position, using .pop() (seeChapter 5). We can also remove all elementsusing .clear(). Let’s see some
example to refresh thesemethods and learn some new tricks.

• From the following list, remove all the elements "ciao":

[15]: 1 greetings = ["ciao","ciao","hello"] greetings is assigned ciao, ciao, hello
2 greetings.remove("ciao") greetings dot remove ciao
3 print (greetings) print greetings
['ciao', 'hello']

Westartwith a list containing three strings, where the element "ciao" is present twice (line 1). Then,
we use the method .remove(), to eliminate "ciao" (line 2). Finally, we print greetings (line 3). Only
one "ciao" (the first one) was removed! In lists containing multiple similar elements, the method

.remove() deletes only the first element. How dowe remove both "ciao" from greetings? The first

171

Part 6. Focus on lists and for loops

instinctive idea might be to use a for loop that goes through all element positions and removes the

unwanted elements based on a certain condition (in this case, remove the element if it is equal to

"ciao"). However, this solution does not work for the reasons explained in the In more depth section
at the end of this Chapter. What we need is a while loop:

[16]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 while "ciao" in greetings: while ciao in greetings
3 greetings.remove("ciao") greetings dot remove ciao
4 print (greetings) print greetings
['hello']

We start with the list greetings (line 1), then we create a while loop where as long as the string
"ciao" is in greetings (line 2), we remove it using the method .remove() (line 3). Finally, we print
the result (line 4).

Let’s continue to see how to remove an element based on its position and all elements in a list. In the

following two cells (17 and 18), we write the list at line 1, and we print the result at line 3. At line 2,

we use a different list method. Let’s have a look at the examples:

• Remove the string "hello" based on its position:

[17]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 greetings.pop(2) greetings dot pop two
3 print (greetings) print greetings
['ciao', 'ciao']

To remove an element based on its position, we use the method .pop(), which we learn in Chapter
5 (line 2). As you might remember, the argument of the method is the position of the element to

delete.

• Remove all elements in a list:

[18]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 greetings.clear() greetings dot clear
3 print (greetings) print greetings
[]

To remove all elements in a list, we use themethod .clear() (line 2). The list becomes an empty list.

Another way to remove elements in a list is by using list comprehension. We will see it in the next

chapter.

6. Sorting a list
Sorting lists is averycommontask in coding. Forexample,wemightwant to sortnamesalphabetically

(see the exercise “A further step!” below) or a list of prices increasingly or decreasingly. In the three

examples below (cells 19, 20, and21), wewill create a list of integers called numbers (line 1), use a new
method to execute the task (line 2), and print the outcome (line 3).

172

Chapter 21. Overview of lists

• Sort the following list of integers:

[19]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.sort() numbers dot sort
3 print (numbers) print numbers
[5, 6, 7]

To sort the list number, we use the method .sort() (line 2). As you can see from the printout, the

numbers are sorted in an increasing (or ascending) way, that is from the smallest to the greatest.

What if we want to sort the numbers in a decreasing (or descending)way? The answer is in the next

example:

• Sort the following list of integers in a descending way:

[20]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.sort(reverse = True) numbers dot sort reverse is assigned True
3 print (numbers) print numbers
[7, 6, 5]

Weuse .sort() aswedid in the example above, butweadd the argument reverse, towhichweassign
theBoolean True—youwill learnmore aboutmethod (or function) parameters starting inChapter 28.
As you can see from the printout, the list is now sorted in a descendingway: that is, from the greatest

to the smallest number.

• Reverse the following list of integers:

[21]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.reverse() numbers dot reverse
3 print (numbers) print numbers
[6, 7, 5]

We use the method .reverse() to invert the order of the elements in the list. Thus, the last will

become the first, the second to last element will become the second, etc. Note that .reverse() sorts
the element based on their position, whereas.sort() (see example above) sorts the elements based
on their value.

7. Searching elements
Let’s conclude our long journey through list methods by learning how to search and count elements.

• Create a list and search for a specific element:

[22]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 position = letters.index("g") position is assigned letters dot index g
3 print (position) print position
1

We create the list letters containing strings (line 1), and we look for the position of the element

"g" by using themethod .index(), which we learned in Chapter 5. Then, we print the results (line 3).
As you can see, .index() just gives us the position of the first element, which is 1—because element
positions start from 0 in Python.

173

Part 6. Focus on lists and for loops

• How dowe find all positions?

[23]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 positions = [] positions is assigned empty list
3 for i in range (len(letters)): for i in range len of letters
4 if letters[i] == "g": if letters in position i is equal to g
5 positions.append(i) positions dot append i
6 print (positions) print positions
[1, 3]

To find all positions of an element in a list, we can use the for loop! We create the list letters (line
1) and the empty list positions that will contain the indices corresponding to the letter "g" (line 2).
Then,we create a for loop that browses all the positions of the letters (line 3), and if the current letter

is equal to "g" (line 4), then we append its position (that is, "i") to the list positions (line 5). Finally,
we print the result (line 6).

• Count howmany times an element is present in a list:

[24]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 n = letters.count("g") n is assigned letters dot count g
3 print (n) print n
2

Westartwith the same list letters as in the example above (line 1), andwe use themethod .count()
to count howmany times the letter "g" is in the list (line 2). Finally, we print the result (line 3).

In this Chapter, you have refreshed and learned how to execute all the typical operations that we

perform on lists by using list methods and various operators. At this point, you can consider yourself

an expert in lists! Congratulations!

A further step!
Answer the following questions to discover more tricks about lists!

1. How canwe efficiently remove the elements of a list in even positions?

2. What is the difference between themethod .clear() and the keyword del?

3. What is the output of the method .sort() for a list of strings? E.g.: sweets = ["chocolate",
"icecream", "candy", "cake"]

174

Chapter 21. Overview of lists

4. What is the output of the method .sort() for a list of strings and numbers? E.g.: sweets_numbers
= ["chocolate", 43, "icecream", "candy", "cake", 18]

Complete the table
In this Chapter, you learned or refreshed the 11 list methods. Fill out the table below with method

definitions and alternative ways to implement the same operation. Some alternatives are presented

in this Chapter or in previous chapters, but for others, you will have to come up with new ideas (feel

free to consult the internet!)

Method What it does Alternative

.append()

.clear()

.copy()

.count()

.extend()

.index()

.insert()

.pop()

.remove()

.reverse()

.sort()

Recap

• We can perform element-wise operations in lists using the arithmetic operators +,-, *, /, **, //, %
• We can perform “arithmetic” operations on lists using concatenation + and replication *
• The 11 methods for lists are: .append(), .clear(), .copy(), .count(), .extend(), .index(),

.insert(), .pop(), .remove(), .reverse(), .sort()
• Of the 11 methods, the 3 methods that return a new value are .copy(), .count(), and .index().
The other 8methodsmodify the lists themselves

175

Part 6. Focus on lists and for loops

Why not use a for loop to remove list elements?

A for loop is not the right way to remove elements in a list for at least two reasons. Let’s see

them in this example:

[]: 1 greetings = ["ciao","ciao","hello"] greetings is assigned ciao,ciao,hello
2 for i in range (len(greetings)): for i in range len of greetings
3 print ("---------------") print dashes
4 print ("i == " + str(i)) print i equal to concatenated with str i
5 print ("before the if:") print before the if:
6 print ("greetings") print greetings
7 if greetings[i] == "ciao": if greetings in position i is equal to ciao
8 del greetings[i] del greetings in position i
9 print ("after the if:") print after the if:
10 print ("greetings") print greetings

(a) i == 0
(b) before the if:
(c) ['ciao', 'ciao', 'hello']
(d) after the if:
(e) ['ciao', 'hello']
(f) ---------------
(g) i == 1
(h) before the if:
(i) ['ciao', 'hello']
(j) after the if:
(k) ['ciao', 'hello']
(l) ---------------
(m) i == 2
(n) before the if:
(o) ['ciao', 'hello']

IndexError Traceback (most recent call last)
Cell In[16], line 6

5 print("before the if:")
6 print("greetings")

> 7 if greetings[i] == "ciao":
8 del greetings[i]
9 print("after the if:")

IndexError: list index out of range

We start with the list greetings that we created in Paragraph 5 (line 1). Then, we create a for
loop that browses all the positions in the list (line 2). In the for loop, we use an if condition to

checkwhether the current element is equal to the element to remove (line7). If that is the case,

thenweremovethecurrentelementusing thekeyworddel, whichwe learned inChapter6 (line
8). In between the main commands, we print some messages to check the list changes at each

iteration: a graphic separator for each loop (line 3), the number of the current iteration (line 4),

and the list before deletion (lines 5 and 6) and after deletion (lines 9 and 10).

Note that for clarity of the following explanation, the printed lines are identified with letters,

which are not actually printed when running the code.

176

Chapter 21. Overview of lists

Let’s see what happens at each loop:

• First loop (i==0): before the if, the list is complete ["ciao", "ciao", "hello"] (line (c)). Af-
ter the if, greetings contains only ["ciao", "hello"] (line (e)). Three changes happened:
(1) the string "ciao" in position 0 (in orange in the figure below) is removed; (2) the element
indices restarted from 0, changing the positions of the remaining elements (that is, the green
"ciao" was in position 1 before the if and moved to position 0 after the if, and the string
"hello"was in position 2 before the if andmoved to position 1 after the if); and (3) the length
of the list changed from 3 to 2. The changes (2) and (3) will have consequences in the second

and third loops.

0 1

"hello"greetings = "ciao"

0 1 2

"ciao" "hello"greetings = "ciao"

i == 0(before the if) (after the if)

Change of list content, element positions, and list length after deletion of a list element.

• Second loop (i==1): before the if, the list is the sameas itwas at the endof the previous loop,
that is ["ciao", "hello"] (line (i)). And after the if, the list remains the same (k) because the
current element greetings[1], that is, "hello", does not satisfy the if condition. Whywasn’t

the string "ciao" in position 0 (green in the figure above) deleted? The change of list index in
the previous loopmoved "ciao" fromposition 1 to position 0, sowe skip its deletion because
we are currently at the second iteration of the for loop!

• Third loop (i==2): before the if, the list is still ["ciao", "hello"] (line (0)). Than, we get
an index error at line 6 of the code, where the if conditions is. This is because i is now 2,
but greetings[2] does not exist because we shortened the list when we deleted the first
"ciao" in the first loop. Thus, the error “out of range” is due to a failed attempt to slice the
list greetings in position 2, which does not exist! Note that the index i is currently 2 because
in the header of the for loop (line 2), we stated that i goes from 0 to the length of the list
(len(greetings)), which is the initial list length and does not adapt to length changes during
the loop!

In conclusion, by using a for loop to delete an element in a list, we can cause two errors: (1) we

skip list elements that we should delete because of the index shift, and (2) we get out of range

errors related to the index because we shorten the list by removing some elements.

177

Part 6. Focus on lists and for loops

Let’s code!

1. Selling veggies at the market. At your stand at the market, you started the day with the following

items:

Item N. of items Price per item

carrots 10 0.7

zucchini 12 0.5

potatoes 4 0.2

a. Create three lists: one for the items, one for the number of items, and one for their prices.

b. Todayyougot3 customers. Youwant to keep trackof howmuchmoneyeach customer spent

and howmuch produce they bought. Create and initialize a list called total, where each el-
ement corresponds to the amount spent by a customer (how long is the list? what are its

content?)

c. The first customer bought 2 carrots, 4 zucchini, and 3 potatoes. Create a list where each

element is the number of bought items (i.e., the list will contain 3 elements, corresponding to

number of carrots, zucchini, and potatoes, respectively).

d. Howmuch did the customer pay? Save the amount in the first position of the list totalwith-
out creating an intermediate variable (hint: if you don’t knowhow to do it, first solve the task

by using an intermediate variable, and then find away to remove it).

e. The second customer got 3 carrots and 3 potatoes. Create the corresponding item list. How

much did the customer pay? Save the amount in the second position of the list total.
f. The third customer wanted 6 carrots, 4 zucchini, and 1 potatoes. Create the corresponding

item list.

g. Did you have enough items to sell? Compute it.

h. Given that the third customer is going to buy whatever is left (e.g., if they wanted 6 carrots,

but only 2 were left, they bought 2), how do youmodify their item list? Use if/else.

i. Howmuchdid the third customer pay? Save the amount in the third position of the list total.
j. What was the average amount a customer spent at your stand?

k. Whatwas yourmost popular item today? And the one you sold the least of? Compute them!

2. New year’s countdown! Given the following list: numbers = [0,1,2,3,4,5,6,7,8,9], reverse it us-
ing:

a. A list method.

b. Slicing.

c. A for loop.

What are the differences among the threemethods?

3. App store. You are running a market study on app store data. These are the prices of the apps in

the store:

app_prices = [
7.99, 7.99, 2.99, 4.99, 7.99, 9.99, 9.99, 1.99, 1.99, 1.99,
4.99, 5.99, 3.99, 5.99, 0.99, 3.99, 3.99, 2.99, 1.99, 4.99,
8.99, 1.99, 3.99, 1.99, 1.99, 8.99, 6.99, 0.99, 6.99, 8.99,

178

Chapter 21. Overview of lists

3.99, 1.99, 0.99, 1.99, 0.99, 8.99, 1.99, 7.99, 3.99, 1.99,
8.99, 2.99, 4.99, 6.99, 4.99, 7.99, 8.99, 1.99, 2.99, 0.99,
7.99, 6.99, 7.99, 6.99, 2.99, 0.99, 0.99, 3.99, 2.99, 5.99,
0.99, 0.99, 7.99, 9.99, 5.99, 5.99, 1.99, 4.99, 5.99, 5.99,
6.99, 9.99, 5.99, 5.99, 1.99, 8.99, 9.99, 4.99, 9.99, 4.99,
0.99, 0.99, 2.99, 9.99, 3.99, 6.99, 8.99, 4.99, 1.99, 9.99,
0.99, 7.99, 1.99, 4.99, 4.99, 0.99, 3.99, 3.99, 1.99, 8.99,
3.99, 9.99, 5.99, 2.99, 2.99, 2.99, 5.99, 4.99, 3.99, 8.99,
5.99, 8.99, 8.99, 1.99, 9.99, 7.99, 6.99, 7.99, 4.99, 4.99,
7.99, 8.99, 7.99, 4.99, 5.99, 5.99, 0.99, 2.99, 8.99, 7.99,
1.99, 3.99, 3.99, 4.99, 9.99, 0.99, 1.99, 3.99, 9.99, 5.99,
4.99, 8.99, 6.99, 5.99, 6.99, 7.99, 1.99, 2.99, 9.99, 6.99,
9.99, 6.99, 8.99, 8.99, 2.99, 1.99, 9.99, 1.99, 7.99, 9.99,
4.99, 3.99, 9.99, 9.99, 6.99, 6.99, 7.99, 9.99, 2.99, 4.99]
a. Howmany apps are there?

b. How many apps cost 4.99? Calculate the result in two ways, once using a list method, and

once using a for loop.

c. What is the percentage of apps that cost 4.99?

d. What are the unique prices of the apps in the store? Find them and sort them in ascending

order.

e. Howmany apps are there for each price?

f. What is themost popular price for an app?

179

22. More about the for loop
Various ways of repeating commands on lists and beyond

In the past several chapters, we have learned how to use the for loop to browse lists (Chapters 8 and

9), search elements in lists (Chapter 10), change list elements (Chapter 11), and create lists by adding

one element at a time (Chapter 12). In addition, we have used the for loop to repeat commands inde-

pendently of lists (see the“Inmore depth” section inChapter 15). Wewill start this Chapter by briefly

refreshingwhatwe already know for sake of completeness. Then, wewill discover new for loops that

we can use with lists, each of them with their own characteristics and usage. Ready? Follow along

with notebook 22!

1. Repeating commands
As the definition says,

A for loop is the repetition of a group of commands

for a determined number of times.

Let’s get a refresher on this concept with the following example:

• Print 3 random numbers between 1 and 10:

[1]: 1 import random import random
2
3 for _ in range (3): for underscore in range three
4 number = random.randint(1, 10) number is assigned random dot randint one ten
5 print (number) print number
6
4
3

Weimport thepackage random (line1). Then,we implement the for loop (lines3–5). Westartwith the

header,which contains: (1) the keyword for; (2) a variable for the index; (3) themembership operator
in; and (4) the built-in function range() (line 3). In this case, we use an underscore as a variable for
the index because we do not need the index in the loop body. We will review the characteristics of

the built-in function range() in the next paragraph. In the body of the for loop—which is always in-
dentedwith respect to theheader—wecreate a randomnumberbetween1and10using the function

.randint() from the package random (line 4), and we print the created number (line 5). The lines of
code in the loop body are repeated at each loop or iteration—in this case, three times, as indicated by

range(3).

2. For loop with lists
There are at least 4 ways to use the for loop with lists. You already know the first one: the for loop

through indices. In this section, we’ll learn the for loop through elements, through indices and ele-

180

Chapter 22. More about the for loop

ments, and list comprehension. Note that through indices, through elements, and through indices and el-

ements are not technical terms; however, wewill use them to distinguish between the different types

of for loops. On the contrary, list comprehension is a technical term that you can find in any Python

book or coding website. In all the examples in this section, we will start with the following list, which

contains three strings:

[]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

Our task will be to change the first letter of each string to upper case. For that, we will apply the

method .title() to each list element, andwewill overwrite the existing list whenever possible.

2.1 For loop through indices

You already know this for loop type. Let’s refresh ourmemories with the following example.

• Capitalize each string using a for loop through indices:

[2]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

2
3 for i in range (len(last_names)): for i in range len last names
4 print ("The element in position " + str (i) +

" is: " + last_names[i])
print The element in position
concatenated with str of i
concatenated with is concatenated
with last names in position i

5 last_names[i] = last_names[i].title() last names in position i is
assigned last names in position
i dot title

6
7 print (last_names) print last names
The element in position 0 is: garcia
The element in position 1 is: smith
The element in position 2 is: zhang
['Garcia', 'Smith', 'Zhang']

We start with the list tomodify (line 1). Then, wewrite the for loop header, which is composed of: (1)

thekeyword for; (2) the indexvariable i; (3) themembershipoperator in; and (4) thebuilt-in function
range (line 3). range() can have three parameters: start, which we omit when it is 0—like in this case;
stop, whichusually coincideswith the lengthof the list; and step, whichweomitwhen it is1—like in this
example. If we need to browse only the first half of the list, we can write range(0,len(last_names)
//2), or if we want to browse only every second position of the list, we can write range(0,
len(last_names),2). Also, let’s not forget that range() is a built-in function that can be used inde-
pendently from a for loop to creates a range of integers: for example, list(range(0,4)) returns
the list [0,1,2,3] and list(range(0,4,2)) returns [0,2]. Why do we use list() combined with
range()when creating a list? Because the built-in function list() converts the output of range()—
which is its own data type—to a list. In the for loop body, we print the current value of the index

i and the corresponding element last_names[i], extracted by slicing (line 4). Then, we change the
current element last_names[i] by applying the stringmethod .title() and reassigning the result to
last_names[i] itself (line 5). Finally, we print last_names to check themodified list (line 7).

181

Part 6. Focus on lists and for loops

2.2 For loop through elements

Let’s learn the first new way of implementing the for loop: the for loop through elements. Read the

example below and try to understandwhat it does:

• Capitalize each string using a for loop through elements:

[3]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

2 last_names_upper = [] last names upper is assigned
empty list

3
4 for last_name in last_names: for last_name in last names
5 print ("The current element is " + last_name) print The current element is

concatenated with last name
6 last_names_upper.append(last_name.title()) last names upper dot append last

name dot title
7
8 print (last_names_upper) print last names upper
The current element is: garcia
The current element is: smith
The current element is: zhang
['Garcia', 'Smith', 'Zhang']

As in theprevious example,we startwith the list tomodify (line 1). Wecontinuewith anewempty list

called last_names_upper thatwewill fill within the loop (line 2). Then, we create the for loop through
elements (lines 4–6). The syntax of the header is: (1) the keyword for; (2) a variable; (3) the mem-
bership operator in; and (4) the list to browse. There are two differenceswith respect to the for loop
through indices. First, the variable in position (2) is not named index or i, but it is usually calledwith
the singular version of the list name—that is, if the list name is last_names, then the variable name is
last_name; if the list name is numbers, then the variable name is number; and so on. This is not a rule
but a useful convention among Python coders. The second difference is that we directly use the list

itself—that is, last_names—in position (4), instead of range(len(last_names)). Let’s now focus on

the loop body. First, we print the current element last_name (line 5). As you may notice, there is no
slicing (that is, no [i]). This is because in a for loop through elements, the variable in position (2)—
that is, last_name—automatically browses list elements one after the other, without knowing their

position. This is the opposite of what happens in a for loop through indices, where the variable in po-

sition (2)—that is, i—browses list positions without knowing the corresponding elements; to get an
element, wemust use slicing (e.g., last_name[i]). See a schematic of the difference between the two
loops in the following figure.

210

"garcia" "smith" " zhang"

for loop through indices:

for loop through elements:

210

"garcia" "smith" " zhang"

for loop through indices

for loop through elements

i =

last_name =

Schematics of a for loop through indices, where an index browses positions (orange), and a for loop through
elements, where a variable browses elements (yellow).

182

Chapter 22. More about the for loop

In thefirst iterationof the example, last_name is "garcia"; in the second iteration, it is "smith"; and in
thethird iteration, it is"zhang". Weconcludebyapplying themethod.title() to thestringlast_name
and appending the output to last_names_upper (line 6). Finally, we print last_names_upper
(line8). Whydon’twedirectlymodifylast_names? Because ina for loop throughelements,wecannot
modify the listwe are browsing. We can only create a new list (that is, last_name_upper) towhichwe
append themodified elements (that is, last_name.title()). Let’s see what happens if we try to use a
for loop through elements to change elements:

[]: 1 for last_name in last_names: for last_name in last names
2 print ("last_name before change: " + last_name) print last_name before change:

concatenated with last name
3 last_name = last_name.title() last names is assigned last

name dot title
4 print ("last_name after change: " + last_name) print last_name after change:

concatenated with last name
5 print (last_names) print last names
last_name before change: garcia
last_name after change: Garcia
last_name before change: smith
last_name after change: Smith
last_name before change: zhang
last_name after change: Zhang
['garcia', 'smith', 'zhang']

In the first iteration, the variable last_name is "garcia" (line 2), we change it to "Garcia" (line 3), and
we print it (line 4). In the second iteration, last_name is "smith" (line 2), we change it to "Smith" (line
3), and we print it (line 4). The procedure follows in the third iteration for "zhang". However, when
we print the final list, all strings are still lower case (line 6). This is because the for loop through ele-

ments does not keep track of element positions, so it is impossible to knowwhere to overwrite a list

element. Finally, note that because there is no index, in a for loop through elements we cannot keep

track of the iteration number. If we need to know the iteration number, we can either use a for loop

through indices (Section 2.1) or a for loop through indices and elements (Section 2.3).

2.3 For loop through indices and elements

As thename implies, the for loop through indices and elements combines a for loop through indiceswith

a for loop through elements. Its implementation is straightforward. Try to understand the example

below before reading the subsequent explanation.

• Capitalize each string using a for loop through indices and elements:

[4]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2
3 for i,last_name in enumerate (last_names): for i last_name in enumerate last_names
4 print ("The element in position " +

str (i) + " is: " + last_name)
print The element in position
concatenated with str of i concatenated
with is concatenated with last name

5 last_names[i] = last_name.title() last names in position i is assigned last
name dot title

183

Part 6. Focus on lists and for loops

6
7 print (last_names) print last names
The element in position 0 is: garcia
The element in position 1 is: smith
The element in position 2 is: zhang
['Garcia', 'Smith', 'Zhang']

The for loop header consists of (1) the keyword for; (2) two variables separated by comma, called
i and last_name; (3) the membership operator in; and (4) the built-in function enumerate()with the
list last_names as an argument (line 3). The differenceswith the other for loop headers is again in the
components (2) and (4). The role of i and last_name is quite intuitive: i is the index that browses all
the positions in the list—like in a for loop through indices—and last_name is the variable that browses
all the elements in the list—like in a for loop through elements. The values to browse are provided by

enumerate(), as we can see from the following command (where we use list() to convert

enumerate()’s output data type into a list to be printed):

[]: print(list(enumerate(last_names))) print list enumerate last names
[(0, 'garcia'), (1, 'smith'), (2, 'zhang')]

The built-in function enumerate() provides a list of coupled indices and elements—that is, (0,
'garcia'), (1, 'smith'), and (2, 'zhang'). Each pair is between round brackets, which indicate a
tuple. Tuples are sequences of elements separated by comma and in between round brackets. We

will talk about tuple characteristics in Chapter 34. During the for loop in this example, the variable

i is assigned the first element of each pair—that is, 0, 1, and 2—and the variable last_name is assigned
the second element of each pair—that is, `garcia', `smith', and `zhang'. In the remaining part of the
example, first we print the position of each element i and its value last_name (line 4). Then, we ap-
ply the method .title() to last_name, and we assign the result to the element in the same position
last_names[i] (line 5). Finally, we print the resulting list (line 6). The for loop through indices and

positions is useful whenwe need to extract both positions and elements of a whole list.

2.4 List comprehension

The fourth and last method to use a for loop in combination with lists is called list comprehension. It

might look complex at first glance, but we are going to untangle it right away!

• Capitalize each string using list comprehension containing a for loop through indices:

[5]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
i in range(len(last_names))]

last names is assigned last name dot
title for i in range len last names

3 print (last_names) print last names
['Garcia', 'Smith', 'Zhang']

At line 2, we see: (1) the list name; (2) the assignment symbol; and (3) the list comprehension. In the

list comprehension, there are two components embedded within a pair of square brackets: (1) the

value of the list element that we are going to insert into the list—that is, last_name.title(); and
(2) a for loop header—that is, for i in range(len(last_names)). To better understand the syntax,
let’s have a look at the figure below comparing the for loop through indices from cell 2 and the list

184

Chapter 22. More about the for loop

comprehension from the cell above.

(a)

(b)

(c)

Comparison between a for loop through indices (lines a–b) and list comprehension (line c).

As you can see, the components of a list comprehension are the same as the components of a for

loop, just in a somewhat inverted position. In a for loop, first we write the header (line (a); orange

rectangle), and thenwe assign themodified element (yellow rectangle) to the element itself (line (b)).

In a list comprehension (line (c)), we write first the modified element (yellow rectangle) and then the

for loop header (orange rectangle). As you can see, list comprehension is a one-line command to

create ormodify a list in a fast and compactway. We conclude the previous example by printing the

new list (line 3).

Can we write a list comprehension containing the header of a for loop through elements? Yes! Let’s

see how.

• Capitalize each string using list comprehension containing a for loop through elements:

[6]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
last_name in last_names]

last names is assigned last name dot
title for last name in last names

3 print (last_names) print last names
['Garcia', 'Smith', 'Zhang']

Similarly to before, in the list comprehension we write first the new element of the list—that is,

last_name.title()—and then the header of a for loop through elements—that is, for last_name in
last_names (line 2). Let’s compare the for loop through elements from cell 3 with the list comprehen-

sion in the cell above. This time, there is a big difference between the for loop and the corresponding

list comprehension. Can you find it?

Top used; bottom discarded

(a)

(b)

(c)

Comparison between for loop through elements (lines a–b) and list comprehension (line c).

The difference is that in a for loop through elements, we must create a new list—that is,

last_names_upper (line (b))—whereas in the list comprehension, we can overwrite the existing list—
that is, last_names (line (c)). The remaining syntax correspondence is the same. In a for loop, first we
write the header (line (a); orange rectangle), and then we modify an element (line (b); yellow rectan-

gle). On the other hand, in a list comprehension (line (c)), we write first a modified element (yellow

rectangle) and then a for loop header (orange rectangle).

185

Part 6. Focus on lists and for loops

Another interesting characteristic of list comprehensions is that they can contain a conditional con-

struct. Let’s have a look at it!

• Keep and capitalize only the elements shorter than 6 characters:

[7]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
last_name in last_names if
len(last_name) < 6]

last names is assigned last name dot
title for last name in last names if len
last name less than six

3 print (last_names) print last names
['Smith', 'Zhang']

Wemodify the code from cell 6 by adding an if condition at the end of the list comprehension (line 2).

Oncemore, let’s compare the construct of a list comprehension with the corresponding for loop.

(a)
(b)

(d)

(c)

Comparison between for loop through elementswith condition (lines a, b, and c)
and list comprehension (line c).

Similarly to above, in the list comprehension (line (d)) first we write the new element, which is in the

last line of the for loop body (yellow rectangle; line (c) in the for loop). Then, we essentially restart

from the beginning of the loop and add commands consecutively. Thus, we first write the for loop

header (orange rectangle; line (a) in the loop) and then the if condition (black rectangle; line (c) in the

loop).

Finally, list comprehensions are extremely useful to delete list elements based on conditions. In cell

16 of the previous Chapter, we used a while loop containing .remove() to delete several elements
with similar characteristics. Now, let’s learn how to delete elements in a much more compact way

with list comprehension.

• Delete elements that are composed of 5 characters:

[8]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title()
for last_name in last_names
if len(last_name) != 5]

last names is assigned last_name dot
title for last name in last names if len
last name not equal to five

3 print (last_names) print last names
['garcia']

Whendeleting elementswith list comprehensions,wehave to think about the elements thatwe are

going to keep, not about those thatweare going todelete! This is because in a list comprehension, in

the first position wemust write the element that we are going to insert into the list. Thus, if wewant

todelete theelementswhose length is 5,weneed to reverseour thinking andwrite the condition that

allows us to keep the elements whose length is not equal to 5—that is if len(last_name) != 5 (line
2).

186

Chapter 22. More about the for loop

Complete the table

In this Chapter, you have learned four different ways to write a for loop with lists. Which one do we

use and when? Highlight the differences among the for loops by completing the following table with

Yes orNo.

Operation For loop

through indices

For loop

through

elements

For loop

through indices

and elements

List

comprehension

Get the current index

Change list elements

Delete list elements

Browse a full list

Browse only a part of a list

3. Nested for loops
As the last topic for this Chapter, let’s learn about nested for loops. A nested for loop is a for loop

within another for loop. How does it work? Read the example below, and try to understand what

happens.

• Given the following list of vowels:

[9]: 1 vowels = ["A", "E", "I", "O", "U"] vowels is assigned A, E, I, O, U

We start with a list of strings (line 1).

• For each vowel, print all the vowels on the right:

[10]: 1 for i in range (len(vowels)): for i in range len vowels
2 print ("-- " + vowels[i]) print dash dash concatenated with vowels

in position i
3 for j in range (i + 1, len(vowels)): for j in range i plus one len vowels
4 print (vowels[i]) print vowels in position i
-- A
E
I
O
U
-- E
I
O
U

187

Part 6. Focus on lists and for loops

-- I
O
U
-- O
U
-- U

The nested for loop in this example is composed of an outer for loop, whose header is at line 1, and

an inner for loop, whose header is at line 3. In the outer for loop, the index i goes from 0 (omitted) to
the length of the list (line 1); thus, iwill browse all list positions. In the inner for loop, the index j goes
from i+1 to the length of the list (line 3); thus, jwill browse all remaining list positions on the right of
the current position i. Foreach iterationof theouter loop, the inner loophas tobecompletedbefore

moving to the next iteration of the outer loop. Here is what happens at each loop:

• In the first outer loop, i is 0. We print "-- " + vowels[0], which is -- A (line 2). Then, we run the
whole inner for loop (lines 3–4). The index jwill start at i+1—which is 0+1, and thus 1—and stop at
len(vowels)-1 for the plus one rule—that is, 4. Thus, jwill go through the positions: [1, 2, 3, 4].
Therefore, in the inner for loop:

■ In the first iteration, j is 1. We print vowels[1], which is E
■ In the second iteration, j is 2. Thus, we print vowels[2], which is I
■ In the third iteration, j is 3 andwe print vowels[3], which is O
■ In the fourth iteration, j is 4 and we print vowels[4], which is U. The inner loop is completed and
we go back to the outer loop.

• In the second outer loop, i is 1, thus we print "-- " + vowels[1], which is --- E (line 2). Then, we
run the whole inner for loop again (lines 3–4). The start of the inner loop is i+1, which is 1+1—that
is, 2. Thus, jwill go through the positions: [2, 3, 4]. Therefore, in the inner loop:
■ In the first loop, j is 2 andwe print vowels[2], which is I
■ In the second loop, j is 3 andwe print vowels[3], which is O
■ In the third loop, j is 3 andweprint vowels[3], which is U. Once again, the inner loop is completed
andwe go back to the outer loop

• In the thirdouter loop, i is2, soweprint-- I. Then,we run the full inner loopasabove,withjbrows-
ing the positions 3 and 4, corresponding to the elements O and U, respectively.

• In the fourth outer loop, i is 3, so we print -- O. In the inner loop, j is assigned only the position 4,
corresponding to the elements U.

• In the last outer loop, i is 4, so we print -- U. There is no inner loop, because the start, i+1, is 5 and
coincides with the stop, which is 5 too.

Can we have more loops nested within each other? Yes! As a convention, the index names are i, j,
k, etc. However, it is strongly recommended not to use too many for loops because they are compu-
tationally very expensive, that is, they use a lot of memory and time. We will talk a bit more about

nested for loops in the next Chapter, where wewill use them to browse lists of lists.

188

Chapter 22. More about the for loop

Recap

• When we use a for loop to repeat commands that do not need the index, we substitute the index

with an underscore

• There are at least 4 types of for loops with lists: through indices (uses range()), through elements,
through indices and elements (uses enumerate()), and list comprehension

• The built-in functions list() can be used to transform the output of range() and enumerate() into
a list

• Thebuilt-in function enumerate() simultaneously extracts coupled indices and elements froma list

• Tuples are sequences of elements separated by commas and in between round brackets

• Nested for loops are for loops within for loops

Basics of Markdown
Asyouknow, in Jupyternotebookswecanusecells toeitherwrite codeor towrite text. Writing

text is fundamental to embed our code into a story (or narrative) that explains the workflow—

that is, howwego from theproblem formulation to its computational solution. In Jupyter note-

books, narrative iswritten inamarkup languagecalledMarkdown—markup languagesarebasi-

cally coding languagesused towrite text. Markdown is a simplifiedversionofHTML, the coding

language used to programwebsites. The syntax of Markdown is very simple. The basic syntax

rules are:

• Titles start with 1 hash symbol (#), subtitles with 2 hash symbols (##), sub-subtitles with 3
hash symbols (###), etc. to amaximum of 6 hash symbols (######))

Command Rendering

#Title Title

##Subtitle Subtitle

###Sub-subtitle Sub-subtitle

• To italicize text, we add 1 asterisk before and after a word or phrase; to bold text, we add 2

asterisks before and after a word or phrase

Command Rendering

italic text italic text

bold text bold text

189

Part 6. Focus on lists and for loops

• To display text as code, we add a backtick ̀ before and after the command

Command Rendering

 ̀print ('command in markdown')̀ print ('command in markdown')

Using Markdown, we can also create tables, add images, write ordered and unordered lists,

etc., and integrate HTML code—in case you know it. Find all Markdown rules of syntax at the

following website: https://www.markdownguide.org/.

Let’s code!

1. All you can eat. These friends are at an all-you-can-eat restaurant:

friends = ["Geetha", "Huanxiang", "Megan", "Pedro"]

This is the finger food at the buffet: food = ["sushi", "nachos", "samosa", "cheese"]

Each person tries each type of finger food. Print out sentences like:

Geetha eats sushi

Geetha eats nachos

...

for all the friends:

a. Using nested for loops through indices.

b. Using nested for loops through elements.

2. Playing kids. At kindergarten, kids are playing a gamewhere they have to pair up with another kid

every time the teacher rings a bell. Eventually, every kid will pair up with all the other kids. Given

this list of kids:

kids = ["Paul", "Juhee", "Luca", "Maria"]
a. Print out all the possible combinations starting from the first kid, that is:

Paul plays with Juhee

Paul plays with Luca

Paul plays withMaria

Juhee plays with Luca

Juhee plays withMaria

Luca plays withMaria

b. Print all the possible combinations starting from the last kid (Maria).

3. Cities of the world. Given the following list cities:

cities = ["Bogota", "Riga", "Kinshasa", "Damascus", "New Delhi", "Auckland"]
a. Using a for loop through indices, create a new list containing city names with more than 7

characters and change them to upper case.

b. Using a for loop through elements, create a new list containing initials of citieswith a number

of characters between 7 and 10.

190

https://www.markdownguide.org/

Chapter 22. More about the for loop

c. Using a for loop through indices and elements, print out each element in lower case and its

position:

d. Using a list comprehension, create a new list containing the city names with less than 7 char-

acters and change them to lower case.

4. Learning to count. Print consecutive numbers from 10 to 29 using a nested for loop. The outer for

loopwill print the first digit, whereas the inner for loopwill print out the second digit, such as:

10

11

12

...

29

5. Triangle of numbers. Ask a user for a number. Thenprint a triangle of numberswhere themaximum

row is the queried number. For example:

Input: 5

Output:

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

Hint: Consider using the parameter end in the print() function. Look for examples on how to use

end online.

191

23. Lists of lists
Slicing, nested for loops, and flattening

What is a list of lists?

A list of lists is a listwhose elements are lists.

Lists of lists follow the same rules as lists; they just add an “extra layer” of indices. In this Chapter, you

will learn how to slice lists of lists, use nested for loops to iterate through them, and explore ways to

flatten them. Follow along with Notebook 23. Let’s go!

1. Slicing
To slice a list of lists, we modify the slicing rules that we learned for lists in Chapter 6: by adding an

extra layer of indices. Let’s see how it works!

• Given the following list of lists:

[1]: 1 animals = [["dog", "cat"], ["cow",
"sheep", "horse", "chicken", "rabbit"],
["panda", "elephant", "giraffe",
"penguin"]]

animals is assigned dog, cat, cow, sheep,
horse, chicken, rabbit, panda, elephant,
giraffe, penguin

The list of lists animals is composed of three elements, which are the lists ["dog", "cat"], ["cow",
"sheep", "horse", "chicken", "rabbit"], and ["panda", "elephant", "giraffe", "penguin"]
(line 1). We call each of these lists sub-lists and their elements ("dog", "cat", "cow", etc.) sub-
element. Let’s learn how to slice sub-lists and sub-elements!

• Print the sub-lists containing pets, farm animals, andwild animals:

[2]: 1 print (animals[0]) print animals in position zero
2 print (animals[1]) print animals in position one
3 print (animals[2]) print animals in position two
['dog', 'cat']
['cow', 'sheep', 'horse', 'chicken', 'rabbit']
['panda', 'elephant', 'giraffe', 'penguin']

The sub-list containing pets—["dog", "cat"]—is in position 0; thus, we print animals[0]. Similarly,
the list containing farm animals—["cow", "sheep", "horse", "chicken",
"rabbit"]—is in position 1, so we print it with the command print (animals[1])
(line 2). Finally, the list containing wild animals—["panda", "elephant", "giraffe", "penguin"]—
is in position 2, and thus the command is print(animals[2]) (line 3).

• Print the sub-elements “cat”, “rabbit”, and from “panda” to “giraffe”:

192

Chapter 23. Lists of lists

[3]: 1 print (animals[0][1]) print animals in position zero in position one
2 print (animals[1][-1]) print animals in position one in position minus one
3 print (animals[2][:3]) print animals in position two in position from the

beginning of the sub-list to three
cat
rabbit
['panda', 'elephant', 'giraffe']

To extract sub-elements, we use double slicing, where the first slicing—indicated by the first pair of

square brackets—extracts a sub-list and the second slicing—indicated by the second pair of square

brackets—extracts oneormore sub-elements. To extract the sub-element "cat", firstweextract the
sub-list of pets ["dog", "cat"] with the command animals[0]—like in cell 2, line 1. Then, from the

obtainedsub-list,weslice"cat", which is inposition1. Thus, thecomplete command isanimals[0][1]
(line 1). The string "rabbit" is the last element of the second sub-list containing farm animals. Thus,

to slice "rabbit", we write animals[1][-1], where the first slicing [1] extracts the sub-list of farm
animals—aswedidatcell2, line2—andthesecondslicing[-1]extracts thesub-element"rabbit" (line
2). Finally, the sub-elements from "panda" to "giraffe" are in the sub-list of wild animals, which is
animals[2]—as we saw in cell 2, line 3. Within this sub-list, "panda" is in position 0, which we omit,
and "giraffe" is in position 2, to which we add 1 for the plus one rule. Thus, the final command is
print(animals[2][:3])

2. Nested for loops
To browse elements in a list of lists, we can use a nested for loop, where the outer loop browses the

list of lists and the inner loop browses the sub-lists. Try to understand what the following example

does and then read the explanation.

• Given the following list of lists:

[4]: 1 sports = [["skiing", "skating",
"curling"], ["canoeing", "cycling",
"swimming", "surfing"]]

sports is assigned skiing, skating, curling,
canoeing, cycling, swimming, surfing

Westartwitha listof lists containing twosub-lists. Thefirst sub-list contains3strings, and thesecond

sub-list is composed of 4 strings (line 1).

• Print the sub-list elements one-by-one using a nested for loops through indices:

[5]: 1 for i in range(len(sports)): for i in range len sports
2 for j in range(len(sports[i])): for j in range len sports in position i
3 print (sports[i][j]) print sports in position i in position j
skiing
skating
curling
canoeing
cycling
swimming
surfing

In the outer for loop, the index i iterates through the positions 0—corresponding to the sub-list

["skiing", "skating", "curling"]—and1—correspondingtothesub-list["canoeing", "cycling",

193

Part 6. Focus on lists and for loops

"swimming", "surfing"]—(line 1). During each outer for loop, the inner for loop browses the current
sub-list from 0 (omitted) to the length of the sub-list, which is len(sports[i]) (line 2). At each itera-
tion of the inner for loop, we print the current element sports[i][j] (line 3). In practice:

• In the first outer loop, i is 0, and we execute a full inner loop to browse the first sub-list:
■ In the first inner loop, j is 0, so we print sports[0][0], which is "skiing".
■ In the second inner loop, j is 1, so we print sports[0][1], which is "skating".
■ In the third inner loop, j is 2, so we print sports[0][2], which is "curling". The inner for loop is
over, andwe go to the second outer for loop.

• In the secondouter loop, i is1, andweexecuteanother full inner loop tobrowse the secondsub-list:
■ In the first inner loop, j is 0, so we print sports[1][0], which is "canoeing".
■ In the second inner loop, j is 1, so we print sports[1][1], which is "cycling".
■ In the third inner loop, j is 2, so we print sports[1][2], which is "swimming".
■ In the fourth inner loop, j is 3, so we print sports[1][3], which is "surfing". The inner for loop is
over; also, the outer for loop is concluded because there are nomore sub-lists.

Canwedo the samewith a for loop through elements? Yes! Think about howwemight go about doing

this before looking into the following code.

• Print the sub-list elements one-by-one using a nested for loops through elements:

[6]: 1 for seasonal_sports in sports: for seasonal sports in sports:
2 for sport in seasonal_sports: for sport in seasonal sports
3 print (sport) print sport
skiing
skating
curling
canoeing
cycling
swimming
surfing

In the outer for loop, the variable seasonal_sports is assigned once the first sub-list and once the
second sub-list (line1). In the inner for loop, thevariable sport is assignedeachelementof the current
sub-list (line 2). For each iteration of the inner for loop, we print the current value of the variable

sport (line 3). In other words:

• In the first iteration of the outer for loop, seasonal_sports is ["skiing", "skating", "curling"]
and the inner for loop browses all the sub-elements of seasonal_sports in the following way:
■ In the first inner loop, sport is "skiing".
■ In the second inner loop, sport is "skating".
■ In the third inner loop, sport is "curling". The inner for loop ends, and we go back to the outer
for loop.

• In the second iteration of the outer for loop, seasonal_sports is ["canoeing", "cycling",
"swimming", "surfing"], and the inner for loop browses all the sub-elements of seasonal_sports
in the following way:

■ In the first inner loop, sport is "canoeing".
■ In the second inner loop, sport is "cycling".

194

Chapter 23. Lists of lists

■ In the third inner loop, sport is "swimming".
■ In the fourth inner loop, sport is "surfing". The inner for loop ends—as does the outer for loop
because wewent thought all the sub-lists.

3. Flattening
Flatteningmeans transforming a list of lists into a list. In otherwords, we take the sub-elements out

of their sub-lists and we put them in a list. There are many ways of performing this operation. We’ll

look at four different ways of doing so, but there can be more. For each method of flattening, try to

implement it yourself first, and then look into the example and explanation below.

• Given the following list of lists:

[7]: 1 instruments = [["contrabass", "cello",
"clarinet"], ["gong", "guitar"],
["tambourine", "trumpet", "trombone",
"triangle"]]

instruments is assigned contrabass,
cello, clarinet, gong, guitar,
tambourine, trumpet, trombone, triangle

• Flatten the list using a nested for loop through indices:

[8]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for i in range(len(instruments)): for i in range len instruments
3 for j in range(len(instruments[i])): for j in range len instruments in

position i
4 flat_instruments.append

(instruments[i][j])
flat instruments dot append instruments
in position i in position j

5 print (flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

We start with the empty list flat_instruments, which we are going to fill out during the subsequent
nested for loop (line 1). Then, for each position in the list of lists (line 2) and each position in each

sub-list (line 3), we append the current sub-element instruments[i][j] to flat_instruments (line 4).
Finally, we print the final list (line 5). As you can see, we flattened instruments, that is, we transform
a list of lists into a list whose elements are instruments’s sub-elements.

• Flatten the list using a nested for loop through elements:

[9]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for group in instruments: for group in instruments
3 for instrument in group: for instrument in group
4 flat_instruments.append(instrument) flat instruments dot append instrument
5 print (flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

Like the previous example, we start with the empty list flat_instruments (line 1). We browse the

sub-lists using the outer for loop (line 2), and within each sub-list, we browse the sub-elements using

the inner for loop (line 3). We append the current sub-element to flat_instruments (line 4). Finally,
we print the obtained flattened list (line 5).

195

Part 6. Focus on lists and for loops

• Flatten the list using a for loop and list concatenation:

[10]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for group in instruments: for group in instruments
3 flattened += group flattened increased by group
4 print (flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

Once more, we start with the empty list flat_instruments (line 1). We write a for loop through ele-

ments to browse the sub-lists (line2). Weconcatenate each sub-list to flat_instruments (line3)—the
corresponding explicit command is flat_instruments = flat_instruments + group. Finally, we print
flat_instruments (line 4). The advantage of this method is that we use only one for loop. As you
might remember, for loops are computationally expensive—in terms of memory and time—and it is

good practice tominimize their use.

• Flatten the list using list comprehension:

[11]: 1 instruments = [instrument for group in
instruments for instrument in group]

instruments is assigned instrument for
group in instruments for instrument in
group

2 print (instruments) print instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

As you might remember from the previous Chapter, when using list comprehension, we do not need

to create anew list, butwecandirectlymodify the current one—which is instruments in this example.
In the list comprehension, we write: (1) what we want to add to the list, which is instrument; (2) the
header of the outer for loop, that is, for group in instruments; and (3) the header of the inner for
loop, which is for instrument in group) (line 1). Note thatwithin the list comprehensionwe can use
a nested for loop through elements because we do not need element positions. Finally, we print the

result (line 2).

Recap

• Lists of lists are lists with lists as elements

• When slicing, we use two pairs of square brackets. In the first pair, we write the position of the

sub-list to slice; in the second pair, wewrite the position of the sub-element(s)

• We can use nested for loops to browse sub-elements

• Wecan flatten a list of lists with a nested for loop, a for loop combinedwith concatenation, or a list

comprehension

196

Chapter 23. Lists of lists

Lists of lists and images

You surely know that digital images are composed of pixels, that is, small colorful squares orga-

nized in a grid. We can think of the grid as a list of lists where each sub�element corresponds

to a pixel of a specific color. Let’s consider the following figure:

Digital representation of a checkerboard. Left: Image rendering. Center: Numerical values

corresponding to the checkerboard colors. Right: List of lists encoding the checkerboard colors.

Each black square corresponds to a pixel containing 0, and each white square corresponds to
a pixel containing 1. Thus, the first (and the third) row of the checkerboard is represented by

the sub-list [0,1,0,1,0], and the second (and the fourth) row is represented by the sub-list

[1,0,1,0,1]. The last row of the checkerboard contains pixels colored with various shades of

grey. Each pixel corresponds to a decimal (float) number. Darker greys are closer to 0 (that is,
to black), whereas brighter greys are closer to 1 (that is, to white).
What about digital colored images? Each pixel is encoded by an RGB list composed of three

numbers, each representing adifferent color: thefirst number is for the red (R) component, the

second number for the green (G) component, and the third number for the blue (B) component.

Let’s have a look at the figure below.

Digital representation of a colored image. Top (from left to right): RBG image, red components, green

components, and blue components. Bottom: list of lists behind the rendered colored image.

Each pixel is represented by a sub-list composed of three numbers. For example, the top left

pixel is red and is represented by the sub-list [255, 0, 0], where 255 represents the amount of
red, the first 0 is for the amount of green, and the second zero 0 is for the amount of blue. Each
row is a list of lists, enclosed in a list of lists of lists! Finally, note that for both greyscale and

colored images, the range of the numbers defining the color can go from 0 to 1 or from 0 to 255.

197

Part 6. Focus on lists and for loops

Let’s code!

1. Playing around. Given the following list of lists:

numbers = [[3,7,1],[7,6,5,4],[8,9,7,4,5]].
a. How long is each sub-list?

b. In the first sub-list, replace the third element with the sum of the previous two elements.

c. In the second sub-list, sort the elements in ascending order.

d. In the third sub-list, substitute the number 4with the number 3.
e. Howmany number 7 are there in total? Save their positions in a list of lists (expected result:

[[0, 1], [1, 3], [2, 2]]).

2. Summing up. Given the following list of lists:

numbers = [[1,3,5],[7,2,8],[3,4,9]].
a. Create a list containing the sumof the numbers in each sub-list (expected result: [9, 17, 16]).

b. Sum all the elements of the list of list using (1) a for loop through indices and (2) a for loop

through values.

3. Matrix time! Give the followingmatrix:

matrix = [[4,1,3,9], [2,1,6,5], [4,0,3,8], [7,2,6,2]]
(If you are not familiar withmatrices, think of amatrix as a table containing numbers.)

a. Print thematrix as a 4x4 table (expected result:

[4, 1, 3, 9]
[2, 1, 6, 5]
[4, 0, 3, 8]
[7, 2, 6, 2])

b. Multiplyall theelementsonthemaindiagonalandprint theresult (expectedresult: 24). Note:

The main diagonal goes from top-left to bottom-right. In this example, the main diagonal

contains: 4,1,3,2.

c. Sum thematrix values vertically (expected result: [17, 4, 18, 24]).

198

PART 7
DICTIONARIES AND
OVERVIEW OF STRINGS
In the first three Chapters of this part, you will learn a new datatype called dictionary. In the last

chapter, youwill integrate your knowledge of strings with newmethods and tricks. Let’s go!

24. Inventory at the English bookstore
Dictionaries

You already know several data types: strings, lists, integers, floats, andBooleans. In this Chapter, you

will learn a new data type called dictionary. What are dictionaries and what can we do with them?

Let’s start from this example. Read the code below aloud and follow along with Notebook 24.

• You are the owner of an English bookstore, and these are some classics you sell:

[]: 1 classics = {"Austen":"Pride and Prejudice",
"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}

classics is assigned Austen:Pride
and Prejudice, Shelley:Frankenstein,
Joyce:Ulyssessss

2 print (classics) print classics

• You are conducting an inventory, and you need to print authors and titles:

[]: 1 # as dict_items as dict_items
2 print (classics.items()) print classics dot items
3 # as a list of tuples as a list of tuples
4 print (list(classics.items())) print list classics dot items

• Then, you need to print authors and titles separately:

[]: 1 # authors as dict_items authors as dict_items
2 print (classics.keys()) print classics dot keys
3 # authors as a list authors as a list
4 print (list(classics.keys())) print list classics dot keys
5
6 # titles as dict_items titles as dict_items
7 print (classics.values()) print classics dot values
8 # titles as a list titles as a list
9 print (list(classics.values())) print list classics dot values

• You notice that the title of the last book is wrong, so you correct it:

[]: 1 print ("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

2 classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

3 print ("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated
with classics at key Joyce

• Then you add two new books that have just arrived: Gulliver’s Travels by Swift and Jane Eyre by

Bronte:

[]: 1 # adding the first book (syntax 1) adding the first book (syntax 1)
2 classics["Swift"] = "Gulliver's travels" classics at key Swift is assigned

Gulliver's travels
3 print (classics) print classics
4
5 # adding the second book (syntax 2) adding the second book (syntax 2)
6 classics.update({"Bronte":"Jane Eyre"}) classics dot update Bronte:Jane Eyre
7 print (classics) print classics

201

Part 7. Dictionaries and overview of strings

• Finally, you remove the books by Austen and Joyce because you have just sold them:

[]: 1 # deleting the first book (syntax 1) deleting the first book (syntax 1)
2 del classics["Austen"] del classics at key Austen
3 print (classics) print classics
4
5 # deleting the second book (syntax 2) deleting the second book (syntax 2)
6 classics.pop("Joyce") classics dot pop Joyce
7 print (classics) print classics

To continue discovering dictionaries, solve the following exercise!

True or false?
1. A dictionary is a Python type enclosed in squared brackets T F

2. In a dictionary, items are in pairs and are separated by commas T F

3. Items are composed of a key and a value separated by an exclamationmark T F

4. .items(), .keys(), .values(), .update(), and .pop() are dictionary elements T F

5. To add an item to a dictionary, we can use either the keyword del or themethod .pop() T F

Computational thinking and syntax
Let’s discover dictionaries step-by-step. Let’s start by running the first cell.

[1]: 1 classics = {"Austen":"Pride and Prejudice",
"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}

classics is assigned Austen:Pride
and Prejudice, Shelley:Frankenstein,
Joyce:Ulyssessss

2 print (classics) print classics
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulyssessss'}

At line 1, there is a variable called classics to which we assign a sequence of items separated by

comma and enclosed within curly brackets {}. Each item (e.g., "Austen":"Pride and Prejudice") is
composedof akey ("Austen") andavalue ("Pride and Prejudice"), whichare separatedbyacolon: .
Thus, we can define a dictionary as follows:

A dictionary is a sequence of key:value pairs separated by commas ,
and in between curly brackets {}

At line 2, we print the dictionary.

Let’s continue by running the second cell.

[2]: 1 # as dict_items as dict_items
2 print (classics.items()) print classics dot items
3 # as a list of tuples as a list of tuples
4 print (list(classics.items())) print list classics dot items
dict_items([('Austen', 'Pride and Prejudice'), ('Shelley', 'Frankenstein'),
('Joyce', 'Ulyssessss')])
[('Austen', 'Pride and Prejudice'), ('Shelley', 'Frankenstein'), ('Joyce', 'Ulyssessss')]

202

Chapter 24. Inventory at the English bookstore

To print the dictionary items, we use the method .items(), which extracts items from a dictionary

(line 2). As you can see in the printout, .items() returns a specific type called dict_items, which con-
tains a list whose elements are the items. We can ignore dict_items and print the contained list by
enclosing themethod output into the built-in function list() (line 4).

What if wewant to extract all keys and all values separately? Let’s look at the following cell.

[3]: 1 # authors as dict_items authors as dict_items
2 print (classics.keys()) print classics dot keys
3 # authors as a list authors as a list
4 print (list(classics.keys())) print list classics dot keys
5
6 # titles as dict_items titles as dict_items
7 print (classics.values()) print classics dot values
8 # titles as a list titles as a list
9 print (list(classics.values())) print list classics dot values
dict_keys(['Austen', 'Shelley', 'Joyce'])
['Austen', 'Shelley', 'Joyce']
dict_values(['Pride and Prejudice', 'Frankenstein', 'Ulyssessss'])
['Pride and Prejudice', 'Frankenstein', 'Ulyssessss']

To extract dictionary keys, we use the method .keys() (line 2). Like .items(), .keys() returns its
datatype, called dict_keys (line4). Toextract the list of keys from the dict_keys, we canuse thebuilt-
in function list(). Finally, to extract dictionary values, we use the method .values() (line 7), which
returns the list of values embedded in another datatype called dict_values. Once again, to extract
the list of values, we use list() (line 9).

How dowe extract a specific value and how dowe change it? Let’s run cell 4.

[4]: 1 print ("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

2 classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

3 print ("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated
with classics at key Joyce

Wrong title: Ulyssessss
Corrected title: Ulysses

To slice a value, the syntax is dictionary[key] (pronunciation: dictionary at key), as we can see in
classics["Joyce"] (line 1). Isn’t it similar to the slicing syntax for lists? Let’s analyze some similar-
ities and differences between dictionaries and lists with the help of the figure on the next page. In

a list, there are elements (e.g., "burger", "salad", "coke")—which are the content of a list—and corre-
sponding indices (e.g., 0, 1, 2)—which define the position of each element. When we want to extract

(or slice) an element, we write the name of the list and the index of the element that we want in be-

tween squared brackets (list[index]). Thus, todays_menu[0] gives us "burger". Similarly, in a dic-
tionary, there are values (e.g., "Pride and Prejudice", "Frankenstein", "Ulysses")—which are the
content of a dictionary—and keys (e.g., "Austen", "Shelley", "Joyce")—which define the position of
each value. When we want to access (or slice) a value, we indicate the name of the dictionary and

the key corresponding to the value that we want in between squared brackets. (dictionary[key]).
Thus, classics["Austen"] gives us "Pride and Prejudice". The main difference between lists and

203

Part 7. Dictionaries and overview of strings

dictionaries lies in the way we define the position of an element or value. In lists, indices order ele-

ments from position 0 to position len(list)-1, in a consecutive and progressiveway (we cannot skip
a position!). On the other side, in dictionaries, keys are in no specific order. Also, note that numbers

cannot be used as keys!

0 1 2

todays_menu = "salad" "coke""burger"

classics = "Austen" "Pride and Prejudice"

”Shelley" "Frankenstein"

"Joyce" "Ulysses"

Indices

Elements

Keys Values

list[index]
todays_menu[0]

dictionary[key]
classics["Austen"]

Slicing a list element

Slicing a dictionary value

List

Dictionary

Comparing structure and slicing syntax for lists (top) and dictionaries (bottom).

Aswe cannot change indices but only elements in lists,wecannot changekeys but only values in dic-

tionaries. As you might have noticed, in the item "Joyce":"Ulyssessss", we need to correct

"Ulyssessss" to "Ulysses". To do so, we overwrite the value "Ulyssessss" using the same syntax as
that used in slicing: classics["Joyce"] = "Ulysses" (line 2). Once more, this is the same syntax as
that used in lists (e.g., if wewant to change "coke" to "water", we write todays_menu[2] = "water").

At the endof cell 4, we check the correction byprinting a string ("Corrected title: ") concatenated
with the sliced new value (classics["Joyce"], which is "Ulysses"; line 3).

Howdowe add a new key:value pair to an existing dictionary? There are twoways. Let’s learn them
in cell 5!

[5]: 1 # adding the first book (syntax 1) adding the first book (syntax 1)
2 classics["Swift"] = "Gulliver's travels" classics at key Swift is assigned

Gulliver's travels
3 print (classics) print classics
4
5 # adding the second book (syntax 2) adding the second book (syntax 2)
6 classics.update({"Bronte":"Jane Eyre"}) classics dot update Bronte:Jane Eyre
7 print (classics) print classics
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels'}
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

The first way is to use a slicing-like syntax, where we write: (1) dictionary name (classics); (2) new
key in between square brackets (["Swift"]); (3) assignment symbol (=); and (4) new value

("Gulliver's travels") (line 2). The second way is to use the method .update(). As an argument,
we use a key:value pair in between curly brackets—that is, a dictionary! (line 6). To make sure that
we added items correctly, we print the dictionary after everymodification (lines 3 and 7).

204

Chapter 24. Inventory at the English bookstore

What about deleting items? Let’s look into the last cell!

[6]: 1 # deleting the first book (syntax 1) deleting the first book (syntax 1)
2 del classics["Austen"] del classics at key Austen
3 print (classics) print classics
4
5 # deleting the second book (syntax 2) deleting the second book (syntax 2)
6 classics.pop("Joyce") classics dot pop Joyce
7 print (classics) print classics
{'Shelley': 'Frankenstein', 'Joyce': 'Ulysses', 'Swift': 'Gulliver's travels',
'Bronte': 'Jane Eyre'}
{'Shelley': 'Frankenstein', 'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

Also in this case, there are two possibilities. The firstway to delete an item is to use the keyword del,
followed by the dictionary name and the key enclosed within square brackets (classic["Austen"];
line 2). The secondway is to use themethod .pop(), with the key of the item to delete as an argument

(line 6). (Once more, this is similar to lists, where we use the method .pop() to delete an element
based on its position.) After each deletions, we print the dictionary to check for correctness (lines 3

and 7).

Complete the table
In this chapter, youhave learnedfivedictionarymethods. Summarizewhat theydoby completing the

following table.

Dictionary method What it does

.items()

.keys()

.values()

.update()

.pop()

Recap

• A dictionary is a Python type containing a sequence of key:value items separated by comma, and in

between curly brackets {}
• Thedictionarymethods .items(), .keys(), and .values() areused to access items, keys, and values,
respectively

• To change a dictionary value, we overwrite the existing value using slicing

• To add a new item, we use a slicing-like syntax or themethod .update()
• To delete an item, we use the keyword del or themethod .pop()

205

Part 7. Dictionaries and overview of strings

Lists of dictionaries
Canwehave lists of dictionaries? Yes! Whendealingwith them,we just have to remember that

they are lists—and not dictionaries! Let’s see how theywork. Find the code below inNotebook

24.

• Given the following list of dictionaries:

[1]: 1 countries = [{"name": "China", "capital": "Beijing"},
{"name": "France":"capital": "Paris"}]

countries is
assigned name:China,
capital:Beijing,
name:France, capital:Paris

2 print (countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'}]

We create a list called countries, composed of two elements that are dictionaries—that is,

{"name":"China", "capital":"Beijing"} and {"name":"France", "capital":"Paris"}. Each
dictionary is composed of two items, where the keys are "name" and "capital" (line1). At line
2, we print countries.

• Add a list element:

[2]: 1 countries.append({"name": "Brazil",
"capital": "Brasilia"})

countries dot append name:Brazil,
capital:Brasilia

2 print (countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'},
{'name': 'Brazil', 'capital': 'Brasilia'}]

Because country is a list (and not a dictionary!), we use the method .append() (and not

.update!). As an argument, we write the new dictionary that we want to add as the third el-

ement of the list (i.e., {"name": "Brazil", "capital": "Brasilia"}; line 1). Then, we print to
check for correctness (line 2).

• Slice the second element:

[3]: 1 print (countries[1]) print countries in position 1
[{'name': 'France', 'capital': 'Paris'}

To slice the second element, we use the usual syntax, list[index], and we obtain the desired
element (line 1).

• Print list elements using a for loop through elements and a for loop through indices:

[4]: 1 # for loop though elements for loop though elements
2 print ("-> for loop though elements") print -> for loop though elements
3 for country in countries: for country in countries
4 print (country) print country
5
6 # for loop though indices for loop though indices
7 print ("-> for loop though indices") print -> for loop though indices
8 for i in range (len(countries)): for i in range len countries
9 print (countries[i]) print countries in position i

206

Chapter 24. Inventory at the English bookstore

-> for loop though elements
{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}
-> for loop though indices
{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}

In the for loop through elements (lines 3–4), country browses the list elements, which are dic-
tionaries. Thus, in the first loop, country is {"name": "China", "capital": "Beijing"}; in
the second loop, country is {"name": "France", "capital": "Paris"}; and in the third loop,
country is {"name": "Brazil", "capital": "Brasilia"}. In the for loop through indices (lines
8–9), i iterates over the positions 0, 1, and 2. Thus, country[i] browses the corresponding
elements—that is, the three dictionaries.

• Print the country names using a for loop through indices and a for loop through values:

[5]: 1 # for loop though elements for loop though elements
2 print ("-> for loop though elements") print -> for loop though elements
3 for country in countries: for country in countries
4 print (country["name"]) print country at key name
5
6 # for loop though indices for loop though indices
7 print ("-> for loop though indices") print -> for loop though indices
8 for i in range (len(countries)): for i in range len countries
9 print (countries[i]["name"]) print countries in position i at key

name
-> for loop though elements
China
France
Brazil
-> for loop though indices
China
France
Brazil

To print the country names, we add a layer of slicing to the for loops that we implemented

in cell 4. As we mentioned above, in the first iteration of the for loop through elements

(lines 3–4), country is the dictionary {"name": "China", "capital": "Beijing"}. To extract
"China", we need to slice at the key "name"—similarly for the other iterations. Thus, we print
country["name"]. In the every iteration of the loop through elements (lines 8–9), country[i] is
one of the dictionaries. To extract the value corresponding to the key "name", we have to
write country[i]["name"]—in other words: country[i] slices the current list element, and
["name] slices the dictionary at the key "name".

207

Part 7. Dictionaries and overview of strings

Let’s code!

1. Student’s information. For the followingscenario, createcodesimilar to thatpresented in this chap-

ter. Youwork in a school Registrar’s Office, and here are the data of a student:

student = {"First name":"Bruce", "Last name":"Zhiang", "Sex":"Male", "Age":21,
"Course":"Literature", "Hobby":"Swimming"}
a. Print all the keys and their values.

b. Print all the keys.

c. Print all the values.

d. Bruce has recently changed his study course from Literature to Foreign Languages, so you up-

date his data.

e. Thereare twopiecesof informationmissing: AddressandPhonenumber, so youadd them(use

two different syntaxes).

f. Finally, because of new privacy policies, you have to remove Sex andHobby.

2. New T-shirts in the store. You are the owner of a clothing store, and you are getting ready for the

summer season. Your supplier has just provided a new set of trendy T-shirts.

a. You create a dictionary containing characteristics of the newT-shirts: they are red, of sizeM,

and have a round neck.

b. Then, you add more information: you received a total of 25 T-shirts and their logo’s color is

blue (use two different syntaxes).

c. Summer is over, and your sales went well. You have sold 20 T-shirts, so you add a new item

containing the number of sold T-shirts.

d. Finally, you number the amount of T-shirts accordingly (calculate the quantity using the pre-

viously created item).

3. Colosseum. You are helping your neighbor’s kid with her history assignment. She needs to collect

data about the Colosseum. So, you go to theWikipedia page (https://en.wikipedia.org/wik
i/Colosseum) and look for some information.
a. You start with some information in a table on the right side of Wikipedia’s page. Thus, you

create a dictionary containing location (Rome), construction years (70–80 AD), and type of

structure (amphitheater).

b. Thenyou read the text, and in thefirst paragraph, you learn that constructionbegan in72AD

andwas completed in80AD.So, you remove thepreviouskeyabout theyearof construction.

Then, you add two separate keys, one for the starting year and one for the completion year

(using two different syntaxes).

c. Howmany years did it take to build the Colosseum?

d. Howmany years have passed since its construction started?

4. At a pet clinic. You are a vet at a pet clinic, and here are some of the pets you are currently taking

care of:

pets = [{"name":"Toby", "animal type":"dog", "age":2},
{"name":"Kitty", "animal type":"cat", "age":5},
{"name":"Tiki", "animal type":"parrot", "age":1}]

208

https://en.wikipedia.org/wiki/Colosseum
https://en.wikipedia.org/wiki/Colosseum

Chapter 24. Inventory at the English bookstore

a. You have just received a new patient, a 4-year-old horse called Sugar, and you add it to the

list.

b. Now, you need to print all the animal names. Do it first with a for loop through elements and

thenwith a for loop through indices.

c. Finally, you add an item that states that all the animals are currently in the clinic (what

datatype do you use?).

5. Juices! You own a juice stand, and you need to keep track of juices and sales.

a. Createa list ofdictionaries containing3 juiceflavors (orange, lemon, andpomegranate), their

prices, and their colors.

b. For each juice, add a new itemwhere the key is ’in shop,’ and the value is a Boolean.

c. You just received a new order (grape juice), and you add it to your list.

d. What is the average price of a juice?

209

25. Trip to Switzerland
Dictionaries with lists as values

In the previous Chapter, you learned about dictionaries and lists of dictionaries. In this Chapter, you

will learn to codewith dictionaries whose values are lists. Follow along with Notebook 25!

• Your friend is planning a trip to Switzerland, and he has asked you for some tips. You start with an

empty dictionary to fill out:

[]: 1 tips = {} tips is assigned an empty dictionary

• He would like to visit some cities and taste typical food. Therefore, you add some recommenda-

tions:

[]: 1 tips["cities"] = ["Bern", "Lucern"] tips at key cities is assigned Bern,
Lucern

2 tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette

3 print (tips) print tips

• Because his stay is four days, you add twomore cities and twomore dishes:

[]: 1 tips["cities"].append("Lugano") tips at key cities dot append Lugano
2 print (tips) print tips

[]: 1 tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
2 print (tips) print tips

[]: 1 tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
2 print (tips) print tips

[]: 1 tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue

2 print (tips) print tips

• Youwant to check that the dictionary is correct, so you print all items one by one:

[]: 1 for k,v in tips.items(): for k v in tips dot items
2 print (k,v) print k v

• Finally, you improve the print for improved readability:

[]: 1 for k,v in tips.items(): for k v in tips dot items
2 print ("{:>6}: {}".format(k,v)) print symbols dot format k v

210

Chapter 25. Trip to Switzerland

True or false?
1. There are at list 3 ways to add an element to a list that is a dictionary’s value. T F

2. .get() is a list method, and .append() is a dictionarymethod T F

3. The built-in function print() can take comma-separated variables as an argument T F

Computational thinking and syntax
Let’s start analyzing the code above by running the first cell:

[1]: 1 tips = {} tips is assigned an empty dictionary

We initialize an empty list by assigning curly brackets to the variable tips (line 1).

Let’s run the second cell:

[2]: 1 tips["cities"] = ["Bern", "Lucern"] tips at key cities is assigned Bern,
Lucern

2 tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette

3 print (tips) print tips
{'cities': ['Bern', 'Lucern'], 'food': ['chocolate', 'raclette']}

We fill out the empty dictionary tips with two new items. The first item has the string "cities" as
a key and the list ["Bern", "Lucern"] as a value (line 1). The second item has the string "food" as a
key and the list ["chocolate", "raclette"] as a value (line 2). To check for correctness, we print the
dictionary (line 3).

We want to add new elements to the two lists that are tips’s values. How do we go about doing so?

Let’s see four possibilities, one in each of the next four cells. In the first two cells we will add a city,

and in the last two cells wewill add two types of food. In all cases, the commandwill be composed of

two steps: (1) extracting the value (i.e., the list) corresponding to a certain key, and (2) adding the

new element to the list.

Let’s add the first city, which is "Lugano":

[3]: 1 tips["cities"].append("Lugano") tips at key cities dot append Lugano
2 print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano'], 'food': ['chocolate', 'raclette']}

First, we slice the list from the dictionary—tips["cities"] is ["Bern", "Lucern"]. Then, we add the
new elements to the list using .append() (line 1). Finally, we print to check for correctness (line 2).

Let’s add the second city, that is, "Geneva":

[4]: 1 tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
2 print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette']}

Like above, we slice the list from the dictionary—tips["cities"] is now ["Bern", "Lucern",
"Lugano"]. Then, we use list concatenation as an alternative to themethod .append(). As youmight
remember, when using list concatenationwemust reassign the changed value to the variable. In this

example, we combine assignment and concatenation with the += operator—the extended command

211

Part 7. Dictionaries and overview of strings

is tips["cities"] = tips["cities"] + ["Geneva"] (line 1). At line 2, we print tips to check the dic-
tionary’s content.

Let’s now add the first type of food, which is "onion tarte":

[5]: 1 tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
2 print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette',
'onion tarte']}

Asanalternative toslicing,wecanextractavalueusing thedictionarymethod.get(), which takes the
corresponding key as an argument. In our case, .get("food") returns the list ["chocolate",
"raclette"]. Then,we add thenewelement ("onion tarte") using the listmethod .append() (line 1).
As youmight have noticed, we created a “chain” of methods, combining a dictionarymethod (.get())
that returns a list, with a listmethod (.append()) thatmodifies the list. At the end of the cell, we print
tips to check for correctness (line 2).

Finally, let’s add the second type of food, that is, "fondue":

[6]: 1 tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue

2 print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette',
'onion tarte', 'fondue']}

Like above, we use the method .get() to extract the value corresponding to "food", which is the list
["chocolate", "raclette", "onion tarte"]. Then, we use concatenation to add the last element
"fondue". Note that in this case we cannot use the compact operator += because we cannot reassign
to tips.get("food"). We can only reassign the outcome to tips["food"] (line 1). Finally, we print
the dictionary to check for correctness (line 2).

In summary, the four ways that we have to add an element to a list that is a value of a dictionary are a

combination of slicing or dictionary method .get() to slice the value from the dictionary, and of list

method .append() or concatenation to add a new element to the list. When coding, you can choose

to use only one way or to alternate several ways. But it is important to know all ways to understand

codewritten by somebody else.

In theexamples above, youmight havenoticed that reading theprint of a dictionary canbehardwhen

several keys and values are displayed in one long line. Let’s learn how to print a key:value pair per line

to improve readability:

[7]: 1 for k,v in tips.items(): for k v in tips dot items
2 print (k,v) print k v
cities ['Bern', 'Lucern', 'Lugano', 'Geneva']
food ['chocolate', 'raclette', 'onion tarte', 'fondue']

We use a for loop through valueswith two variables k—for the keys—and v—for the values. The two
names could be different, but conventionally we use the initial of the variable they represent. k and
v simultaneouslybrowse thedictionary items returnedby the.items()method (line1). At each itera-
tion,weprint thecurrentkeykwith thecorrespondingvaluev (line2). Note thatkandvare separated
by comma. This is independent from the fact that we are printing the items of a dictionary. The built-

212

Chapter 25. Trip to Switzerland

in function print() can take variables of different types separated by comma as an argument. For

example, we can use print ("The Swiss cities in the list are", 4) as an alternative to print
("The Swiss cities in the list are" + str(4)).

What if wewant to print only the keys or only the values? Let’s have a look!

[]: 1 for k in tips.keys(): for k in tips dot keys
2 print (k) print k
cities
food

In the for loopheader, weuse only the variable k in combinationwith themethod .keys() (line 1), and
we print k only (line 2). Similarly for the values:

[]: 1 for v in tips.values(): for v in tips dot values
2 print (v) print v
['Bern', 'Lucern', 'Lugano', 'Geneva']
['chocolate', 'raclette', 'onion tarte', 'fondue']

In the for loop header, we use only the variable v in combination with the method .values() (line 1),
andwe print v only (line 2).

Finally, let’s have a look at onemore elegant way to print dictionaries:

[8]: 1 for k,v in tips.items(): for k v in tips dot items
2 print ("{:>7}: {}".format(k,v)) print symbols dot format k v
cities: ['Bern', 'Lucern', 'Lugano', 'Geneva']

food: ['chocolate', 'raclette', 'onion tarte', 'fondue']

The for loop header is the same as in cell 7: k and v iteratively browse keys and values returned by
.items() (line1). The argument of thebuilt-in function print() at line2 looks abitmore complicated.
Let’s disentangle it! There is a string—constituted by red characters in between quotes—followed by

the string method .format(), which takes two arguments: k and v. The symbols in the string con-
tain two pairs of curly brackets, one with the symbols {:>6}, and one empty {}. These pairs of curly
brackets have nothing to dowith dictionaries. They are placeholders for the arguments of the string

method .format(). Thefirst argument kwill beprintedat theplaceof {:>6}and the secondargument
v at the place of {}. What is the meaning of {:>6}? It is composed of three parts: (1) the symbol : in-
dicates to print the whole text; (2) the symbol > specifies that the text is aligned to the right; and (3)
the symbol 6 indicates that the printing space is made of 6 characters—because cities has 6 char-
acters. What about the colon between the two placeholders? It is simply the colon printed between

each key and the corresponding value—e.g., cities: ['Bern' ... Finally, what is the function of the
stringmethod .format()? It formats the arguments and inserts them into the placeholders.

213

Part 7. Dictionaries and overview of strings

Insert into the right column
Insert string, list, and dictionarymethods in the right column:

.keys(), .upper(), .insert(), .append(), .values(), .copy(), .lower(), .pop(), .count(),
.format(), .capitalize(), .index(), .extend(), .get(), .items(), .title(), .remove(), .clear(),

.update(), .pop(), .reverse(), .sort()

Dictionarymethods Stringmethods List methods

Recap

• To initialize a dictionary, we use a pair of empty curly brackets {}
• The dictionarymethod .get() takes a key as an argument and returns the corresponding value
• There are at least 4 differentways to access andmodify dictionary values that are lists, by combin-

ing:

■ Slicing or .get() to extract a list from a dictionary

■ List operations (such as concatenation) or methods (e.g., .append()) to modify a list
• We can use the for loop through values to browse items, keys, and values of a dictionary

• The built-in function print() can take several variables as an argument:
■ Separated by comma, or

■ Using placeholders {} in combination with the stringmethod .format()

214

Chapter 25. Trip to Switzerland

Dealing with KeyError

When coding with dictionaries, key errors can occur. Let’s see what it means and how to fix it!

Let’s consider the same example as in this Chapter, and let’s slice the value corresponding to

the key "cities":

[]: 1 tips ["city"] tips at key city

KeyError Traceback (most recent call last)
Cell In[3], line 1

> 1 tips ["city"]
KeyError: 'city'

As you know, to understand an error, we start from the last line. It says KeyError: 'city',
whichmeans that wemade an error on the key 'city'—it should be 'cities'! To knowwhere

the error is, we look for the green arrow,which shows thatwe need to correct at line 1. To fix it,

we just replace "city", with "cities" in the code. Note thatwecanget the sameerrormessage
when a key does not exist.

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Olympic Games. You are a sports journalist, and your task is to collect a dictionary of summer

andwinter sports performed at theOlympic Games.

a. Create an empty dictionary that youwill fill out with someOlympic Games.

b. Add two summer sports and twowinter sports.

c. The lists in thevalues lookabit short. Addtwomoresummersportsandtwomorewinter

sports. Add each element with a different method.

d. Print all items one by one in two different ways.

e. Finally, print only the sports lists.

b. Teaching Python. You are teaching Python to some students, and youwant to list their names

according to the course they are attending.

a. Create an empty dictionary called students.
b. So far, there are two students for the basic course and three students for the advanced

course. Add their names to the dictionary.

c. You have just received four new registrations: three for the basic course and one for

the advanced course. So, you add the new students’ names to the dictionary using four

different ways.

d. After checking the background of the students attending the basic course, you realize

that one of them should be in the advanced course. So you move the student from the

basic to the advanced course.

e. To check for correctness, you print all items one by one in two different ways.

215

Part 7. Dictionaries and overview of strings

f. Finally, you print the course names and the students’ names separately.

2. Furniture store. You are the manager of a furniture store. Here are the pieces of furniture in stor-

age:

store = {"furniture": ["chair", "table", "sofa"],
"amount": [24, 7, 6],
"price" : [200, 500, 1200]}

a. A new customer comes in and buys 4 chairs. Update the dictionary using an arithmetic oper-

ation.

b. After a few days, you receive new pieces of furniture: 9 carpets worth 150 each and 4 lamps

worth 180 each. So, you add them to the dictionary (use different syntaxes).

c. The owner of a restaurant comes to your shop and buys all the tables. Update the dictionary

(use at least 2 different syntaxes).

d. To better visualize what is left, you print the dictionary aligning the keys to the right and the

values to the left.

e. What is the total price of the furniture in storage?

3. Shifting list elements! Given the following dictionary:

dictionary = {"numbers":[2,3,4,5,6,7,8,9,10]}
a. Add a key:value pair where the key is the string even and the value is a list containing True for

even numbers and False for odd numbers
(Expected result:

{"numbers": [2, 3, 4, 5, 6, 7, 8, 9, 10],
"even": [True, False, True, False, True, False, True, False, True]})

b. Subtract 1 from each number

c. How do you modify the Boolean list so that it corresponds to the new list of numbers? Hint:

Just shift it!

4. Numbers in a triangle! Ask a player for an integer. Then, print a triangle where each row contains

a consecutive integer between 1 and the number entered by the player. Additionally, each row

should include a list containing the number from that row repeated the same number of times as

the number itself. To do that, use a dictionary and allow the player to play as long as they want!

Example input: 5
Expected output:

1 [1]
2 [2, 2]
3 [3, 3, 3]
4 [4, 4, 4, 4]
5 [5, 5, 5, 5, 5]

216

26. Counting, compressing, and sorting
What are dictionaries for?

In this Chapter, the final one dedicated to dictionaries, you will learn some typical situations where

using dictionaries is very convenient. Try to solve each example by yourself before looking into the

solution. You can find the code in Notebook 26!

1. Counting elements
Dictionaries are extremely convenient when we need to save occurrences, that is, the number of

times something happens. Let’s understandwhat this means with the following example.

• Given the following string:

[1]: 1 greetings = "hello! how are you?" greetings is assigned hello! how are you?

• Create a dictionary where the keys are the letters of the alphabet found in the string, and the cor-

responding values are the number of times each letter is present. Write the code in two ways: (1)

using if/else; and (2) using .get()

1. Using if/else:

[2]: 1 letter_counter = {} letter counter is assigned an empty
dictionary

2
3 for letter in greetings: for letter in greetings
4 if letter not in letter_counter.keys(): if letter not in letter counter dot keys
5 letter_counter[letter] = 1 letter counter at key letter is assigned

one
6 else: else
7 letter_counter[letter] += 1 letter counter at key letter is

incremented by one
8
9 for k,v in letter_counter.items(): for k v in letter counter dot items
10 print (k,v) print k v
h 2
e 2
l 2
o 3
! 1

3
w 1
a 1
r 1
y 1
u 1
? 1

We start with an empty dictionary called letter_counter (line 1). We browse each character of the

string greetings using a for loop through elements (line 3)—the for loop through elementsworks the

217

Part 7. Dictionaries and overview of strings

sameway for lists and strings. Then, for each character, we check if it is a key of letter_counter and
weact accordingly (lines 4–7). More precisely, wefirst evaluate if the current character is not already

a key of letter_counter by checking if letter, which is a string, is not in the output of

letter_counter.keys() (line 4). Note that we can directly check the membership of letter in

dict_keys (returned by .keys()) without having to transform into a list—in other words, we do not

need towrite list(letter_counter.keys()). If the condition at line 4 is satisfied, thenwe add a new
key:value pair, where the key is letter, and the value is 1 (line 5). On the other hand, if the current
character is already a key in letter_counter (else at line 6), thenwe add 1 to the already existing cor-
responding value (line7)—the explicit command is letter_counter[letter] =
letter_counter[letter] + 1. To better understand this, let’s look at what happens at the third and
fourth loops. At the third loop, letter is l (hello). Because l is not already a key in letter_counter
(line 4), we create a new dictionary item, where l is the key and 1 is the value (line 5). At the fourth
loop, letter is l again (hello). Because this time l is already a key (line 6), we slice the value at
letter_counter[l], which is 1, add 1, and we reassign it into the dictionary (line 7). We terminate

the task by printing each letter and its corresponding amountwith a for loop through keys and values

(lines 9–10).

2. Using .get():

[3]: 1 letter_counter = {} letter counter is assigned an empty
dictionary

2
3 for letter in greetings: for letter in greetings
4 letter_counter[letter] =

letter_counter.get(letter, 0) + 1
letter counter at key letter is assigned
letter counter dot get letter zero plus
one

5
6 for k,v in letter_counter.items(): for k v in letter counter dot items
7 print (k,v) print k v
h 2
e 2
l 2
o 3
! 1

3
w 1
a 1
r 1
y 1
u 1
? 1

Similarly to cell 2,we startwith the emptydictionary letter_counter (line1), continuewith a for loop
through elements (line 3), and conclude by printing the obtained dictionary to check the correctness

of the results (lines 6–7). As opposed to what we saw above, the four lines of code containing the

if/else construct (lines 4–7, cell 2) are replaced by one single line containing the following: an assign-

ment, themethod .get(), and a sum (line 4). Themethod .get() contains two arguments, letter and
0, and it acts as follows: if the key does not exist, .get() returns the second argument; if the key

already exists, .get() returns the corresponding value. Thus, this is what happens at line 4:

218

Chapter 26. Counting, compressing, and sorting

• If the current key letterdoesnotexist yet—as in the third loopwhere letter is thefirst l in hello—
then .get(letter, 0) returns 0. Then, we add 1 to 0, and we create a new key:value pair in the
dictionary by assigning the result to letter_counter[letter].

• If thecurrentkeyletteralreadyexists—as in the fourth loopwhereletter is thesecondl inhello—
then .get(letter, 0) returns the value corresponding to letter—that is, 1. We add 1 to the re-
turned 1 to increment the count, and we update the existing key:value pair in the dictionary by
reassigning.

Why dowe use 0 as the second argument? Since in this line of codewe need to have +1 to update the
counts of the already existing letters, the only waywe have to obtain 1 for a new letter is to sum to 0.

2. Compressing information
Dictionaries are extremely convenient for compressing redundant information: for example, to store

signals acquired by sensors over a long time. Think of a sensor used to detect vibrations in the case of

an earthquake. Most of the time, the sensor just records zeros as there is no seismic event. However,

when an earthquake occurs, the sensor registers a spike (or a group of spikes) whose magnitude is

different from zero. Saving days and days of zeros in a list would require a significant amount of com-

putermemory, and itwould be somewhat pointless because the signal information is in the spikes. To

reduce the amount of storage memory while keeping the information, we can use a dictionary. How

would you do it? And howwould you then go back from the dictionary to the original list?

• Given the following list:

[4]: 1 sparse_vector = [0, 0, 0, 1, 0, 7, 0, 0,
4, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0,
0, 0, 9, 0, 0]

sparse vector is assigned a list of
numbers

We start with a list called sparse_vector, containing many zeros and a few integers spread among

the zeros. (Note: in linear algebra, sparse vectors are vectors where themajority of components are

zeros.)

• Convert it into a dictionary:

[5]: 1 # create the dictionary create the dictionary
2 sparse_dict = {} sparse dict is assigned an empty

dictionary
3 for i in range (len(sparse_vector)): for i in range len of sparse vector
4 if sparse_vector[i] != 0: if sparse vector in position i is not

equal to zero
5 sparse_dict[i] = sparse_vector[i] sparse dict at key i is assigned sparse

vector in position i
6
7 # save the list length save the list length
8 sparse_dict["length"] = len(sparse_vector) sparse dict at key length is assigned

len of sparse_vector
9
10 # print print
11 for k,v in sparse_dict.items(): for k v in sparse dict dot items
12 print (k,v) print k v

219

Part 7. Dictionaries and overview of strings

3 1
5 7
8 4
12 8
16 6
24 9
length 27

We start with an empty dictionary called sparse_dict (line 2). Then, we browse the list

sparse_vectorwith a for loop through indices (line 3) to select and save the information—that is, the
nonzero integers and their positions in the list. If the current list element sparse_vector[i] is not
equal to zero (line 4), then we add a new item to the dictionary sparse_dict, where the key is the
position of the element in the list—that is, [i]—and the value is the current nonzero element—that
is, sparse_vector[i] (line 5). After the loop, we save an item where the key is the string "length",
and the value is the actual length of the list (len(sparse_vector); line 8). This key:value pair will be
useful to convert the dictionary back into a list, like we will see in the next cell. Finally, we print each

dictionary itemwith a for loop through elements to check the correctness of our code (lines 11–12).

• How dowe get back to the sparse vector?

[6]: 1 # create a list of zeros create a list of zeros
2 sparse_vector_back = [0] *

sparse_dict["length"]
sparse vector back is assigned 0 times
sparse dict at key length

3
4 # add nonzero values add nonzero values
5 for k,v in sparse_dict.items(): for k v in sparse dict dot items
6 if k != "length": if k is not equal to length
7 sparse_vector_back [k] = v sparse vector back at key k is assigned v
8
9 # print print
10 print (sparse_vector_back) print sparse vector back
[0, 0, 0, 1, 0, 7, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0]

We start by creating a list of zeros called sparse_vector_back of the same length as the original list
sparse_vector. To create sparse_vector_back, we use list replication, where we replicate a list con-
tainingazero ([0]) for anumberof timesequal to the lengthof theoriginal list—whosevaluewesaved
in correspondence with the key "length". Then, we overwrite the nonzero values into the list. With

a for loop, we browse each key:value pair in the dictionary (line 5). If the current key is not equal to
"length" (line 6)—we need tomake sure thatwe do not access that item—thenwe assign the current
value v, which represents the magnitude of a spike, to the list sparse_vector_back in position k (line
7). Finally, we print the list to check for correctness (line 10).

3. Sorting dictionaries
In this last example about dictionaries and their applications, we will learn how to sort dictionaries

according to their keys or values. Consider a simplified city registry containing citizens’ names as

keys and their ages as values. Officersmight need to sort the registry according to names to send out

letters, or according to age to distinguish the kids from the elderly. Let’s see how to do it!

220

Chapter 26. Counting, compressing, and sorting

• Given the following dictionary:

[7]: 1 registry = {"Shaili":4, "Chris":90,
"Maria":70}

registry is assigned Shaili:4, Chris:90,
Maria:70

• Sort the dictionary items according to their keys:

[8]: 1 # create a new dictionary create a new dictionary
2 sorted_registry = {} sorted registry is assigned empty

dictionary
3
4 # sort the keys sort the keys
5 sorted_keys = list(registry.keys()) sorted keys is assigned list registry dot

keys
6 sorted_keys.sort() sorted keys dot sort
7
8 # fill out the new dictionary fill out the new dictionary
9 for k in sorted_keys: for k in sorted keys
10 sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k
11
12 print (sorted_registry) print sorted registry
{'Chris': 90, 'Maria': 70, 'Shaili': 4}

We start with an empty dictionary called sorted_registry that will have the same content as

registry, but the itemswill be sorted according to the keys (line 2). To sort the keys, we execute two
steps. First, we extract the keys using the dictionarymethod .keys() and then transform its output—

whose type is dict_keys—into a list using the built-in function list() (line 5). Then, we sort the ob-
tained keys—['Shaili', 'Chris', 'Maria']—in alphabetical order using the list method .sort(),
obtaining['Chris', 'Maria', 'Shaili'] (line6). Finally,webrowse the listof sortedkeysusinga for
loop through elements (line 9) to fill out sorted_registry. For each key k, we extract the correspond-
ing value in registry (registry[k]) and assign it to sorted_registry at key k (sorted_registry[k]),
thus creating a new dictionary item. For example, in the first loop, k is "Chris", so extract 90 from
registry (registry[k]), andwe assign it to "Chris" in sorted_registry (sorted_registry[k]). Then,
wedo the same for the keys "Maria" and ’"Shaili". Finally, weprint sorted_registry[k] to check for
correctness (line 12).

• Sort the dictionary items according to their values:

[9]: 1 # create a new dictionary create a new dictionary
2 sorted_registry = {} sorted registry is assigned empty dictionary
3
4 # sort keys according to values sort keys according to values
5 sorted_keys = sorted(registry,

key = registry.get)
sorted keys is assigned sorted registry key
is assigned registry dot get

6
7 # fill out the new dictionary fill out the new dictionary
8 for k in sorted_keys: for k in sorted keys
9 sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k
10
11 print (sorted_registry) print sorted registry
{'Shaili': 4, 'Maria': 70, 'Chris': 90}

221

Part 7. Dictionaries and overview of strings

To sort a dictionary according to values, we use the same procedure as above: we create an empty

dictionary (line 2); we sort the keys (line 5); we fill out the empty dictionary using a for loop through

elements that browses the sorted keys (line 8) and adds sorted key:value pairs to the dictionary (line
9); and we print to check for correctness (line 11). What is different is the way we sort the keys, that

is, according to dictionary values. To do that, we use the built-in function sorted() (line 5), which
takes two arguments: (1) the dictionary whose keys wewant to sort and (2) the dictionary combined

with the method .get (note the absence of round brackets). Note that sorted() can be used also
with lists and strings—mainly with only one argument—as an alternative to themethod .sort(). The
difference is that sorted() returns a variable (e.g., sorted_list = sorted(original_list)), whereas
.sort() directly acts on the list (e.g., original_list.sort()).

Recap

• Some typical examples of dictionary use include counting elements, compressing information, and

sorting a dictionary according to keys and values

• The dictionary method .get(key,initial value) is used to initialize a key:value pair in a dictio-
nary and fill it up during a for loop

• The built-in function sorted() is used to sort a dictionary; note that it creates a new variable

Remaining dictionary methods

Dictionaries have11methods. In the past three chapters, wehave learned six dictionarymeth-

ods: .items(), .keys(), .values(), .get(), .update(), and .pop(). Here are the remaining 5
methods:

• .clear(): Deletes all the elements from the dictionary (makes the dictionary empty)

• .copy(): Provides a copy of the dictionary and thus allows separatemodification
• .fromkeys(): Creates a dictionary with the keys specified in a list and a default value
• .popitem(): Removes the last inserted key:value pair
• .setdefault(): Returns thevalueof the specifiedkey. If thekeydoesnot exist, then it inserts
the new key:value pair into the dictionary

Create your examples
In a notebook, write an example for each of the new dictionary methods introduced in the In more

depth section above: .clear(), .copy(), .fromkeys(), .popitem(), and .setdefault(). If you want,
you can start from this dictionary:

fruit_colors = {"strawberry":"red", "banana":"yellow", "kiwi":"green"}

222

Chapter 26. Counting, compressing, and sorting

Let’s code!

1. From dictionary to list of lists and back! Given the following dictionary:

cars = {"sports car":4, "convertible": 5, "limousine": 2}
a. Transform the dictionary into a list of lists

(Expected result:[['sports car', 4], ['convertible', 5], ['limousine', 2]])
b. Transform the list of lists back to the original dictionary

2. Multiplication table game! You are a programmer at an educational game company. Your task is

to create a game where a kid enters a number, and you display the corresponding multiplication

table. To implement the game, create a dictionary where the keys are numbers from 1 to 10 and

the values are the results of themultiplications between the key and the value entered by the kid.

Use a for loop and allow the kid to play as long as they want.

(Example input: 4
Example output:

1 x 4 = 4
2 x 4 = 8
3 x 4 = 12
4 x 4 = 16
5 x 4 = 20
6 x 4 = 24
7 x 4 = 28
8 x 4 = 32
9 x 4 = 36
10 x 4 = 40)

3. Spices and herbs. You work in a grocery store selling spices and herbs. Here are the spices and

herbs in the shop:

spices_herbs = ["basil", "cinnamon", "licorice", "mint", "rosemary", "thyme",
"cardamom", "turmeric", "cilantro", "oregano", "pepper", "chili", "dill",
"cayenne pepper", "ginger", "garlic", "marjoram", "nutmeg", "sage", "saffron",
"star anise", "bay leaves"]
a. You have to change the labels on the containers and give them a more modern look. The

length of the new labels is proportional to the length of the word written on it. Create a dic-

tionary where keys are word lengths and values are lists of words with that length

b. Youneedtoknowhowmany labelsyouhavetocut foreach length. Createanotherdictionary

where keys are word lengths in an ascending order, and values are the number of labels you

have to cut for each length

c. What is themost common label? Howmany letters does it correspond to? Compute it!

223

References

• The cover is inspired by the cover of the book “Working in Public: TheMaking andMaintenance of

Open Source Software” by Nadia Eghbal. Stripe Press. 2020

• Some examples in the book are inspired from the examples in “Coding for Kids: Python: Learn to

Codewith 50 AwesomeGames and Activities” by Adrienne Tacke. Rockridge Press. 2019

Dear coder,

Thanks for learning withme!

Visit www.learnpythonwithjupyter.com to:

• Findmore information about the book

• Download the Jupyter Notebooks

• Join the LPWJCommunity for exercise solutions andQ&A

Your feedbacks and comments are fundamental to improve the book!

• Fill out the feedback form at: www.tinyurl.com/lpwj-feedback, and/or

• Email me at: serena.bonaretti.research@gmail.com

I am looking forward to hearing from you!

Next release: Chapter 27 on June 23, 2024

Have fun coding!

Serena

www.learnpythonwithjupyter.com
www.tinyurl.com/lpwj-feedback

	Text, questions, and art
	Events and favorites
	In a bookstore
	Grocery shopping
	Customizing the burger menu
	Traveling around the world
	Senses, planets, and a house
	My friends' favorite dishes
	At the zoo
	Where are my gloves?
	Cleaning the mailing list
	What a mess at the bookstore!
	Implementing a calculator
	Playing with numbers
	Fortune cookies
	Rock paper scissors
	Do you want more candies?
	Animals, unique numbers, and sum
	And, or, not, not in
	Behind the scenes of comparisons and conditions
	Overview of lists
	More about the for loop
	Lists of lists
	Inventory at the English bookstore
	Trip to Switzerland
	Counting, compressing, and sorting

