
Gradual Soundness: Lessons from Static Python

Kuang-Chen Lua, Ben Greenmana, Carl Meyerb, Dino Viehlandb, Aniket
Panseb, and Shriram Krishnamurthia

a Brown University, Providence, RI, USA

b Meta, Menlo Park, CA, USA

Abstract

Context Gradually-typed languages allow typed and untyped code to interoperate, but typically come with
significant drawbacks. In some languages, the types are unreliable; in others, communication across type
boundaries can be extremely expensive; and still others allow only limited forms of interoperability. The
research community is actively seeking a sound, fast, and expressive approach to gradual typing.

Inquiry This paper describes Static Python, a language developed by engineers at Instagram that has proven
itself sound, fast, and reasonably expressive in production. Static Python’s approach to gradual types is es-
sentially a programmer-tunable combination of the concrete and transient approaches from the literature.
Concrete types provide full soundness and low performance overhead, but impose nonlocal constraints. Tran-
sient types are sound in a shallow sense and easier to use; they help to bridge the gap between untyped code
and typed concrete code.

Approach We evaluate the language in its current state and develop a model that captures the essence of
its approach to gradual types. We draw upon personal communication, bug reports, and the Static Python
regression test suite to develop this model.

Knowledge Our main finding is that the gradual soundness that arises from a mix of concrete and transient
types is an effective way to lower the maintenance cost of the concrete approach. We also find that method-
based JIT technology can eliminate the costs of the transient approach. On a more technical level, this paper
describes two contributions: a model of Static Python and a performance evaluation of Static Python. The
process of formalization found several errors in the implementation, including fatal errors.

Grounding Our model of Static Python is implemented in PLT Redex and tested using property-based sound-
ness tests and 265 tests from the Static Python regression suite. This paper includes a small core of the model
to convey the main ideas of the Static Python approach and its soundness. Our performance claims are based
on production experience in the Instagram web server. Migrations to Static Python in the server have caused
a 3.7% increase in requests handled per second at maximum CPU load.

Importance Static Python is the first sound gradual language whose piece-meal application to a realistic code-
base has consistently improved performance. Other language designers may wish to replicate its approach,
especially those who currently maintain unsound gradual languages and are seeking a path to soundness.

ACM CCS 2012
Software and its engineering→ Semantics;

Keywords gradual typing, migratory typing, language design, concrete types, shallow types

The Art, Science, and Engineering of Programming

Submitted April 29, 2022

Published June 15, 2022

doi 10.22152/programming-journal.org/2023/7/2
© K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 1, 2023, article 2; 40 pages.

��������

T
h
e
 A

rt
,
S
ci

en
ce

, a
nd Engineering of Pro

g
ra

m
m

in
g

Artifact Evaluatio
n

https://doi.org/10.5281/zenodo.6577584
https://doi.org/10.22152/programming-journal.org/2023/7/2
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Gradual Soundness: Lessons from Static Python

1 Introduction

Gradual typing is an enticing solution to the debate between static and dynamic
typing. The premise is simple: let programmers introduce types in part of a codebase
while leaving the rest untyped. Run-time casts and checks can enforce the assumptions
that typed code makes about untyped components, thereby ensuring that the types
are sound no matter how untyped code behaves.
Unfortunately, the high run-time cost of sound types has split the gradual typing

community. Industry teams have developed innovative optional type systems that
accommodate untyped designs, but are unsound [2, 7, 45, 63]. These systems inten-
tionally check nothing at run-time when untyped values enter typed code. Academic
teams have primarily focused on the theory of sound gradual types, formulating
correctness properties and studying ever-more-descriptive type systems (e.g., [6, 34,
41, 51]). A few academics have studied the cost of run-time checks in detail [23, 55]
and proposed implementation methods [11, 30], compiler technology [1, 65], and even
weakened semantics [21, 25, 66], but these efforts have not yet decisively closed the
performance gap. The most promising attempt is the concrete semantics for gradual
types [8, 39, 67], but it imposes nonlocal constraints on untyped code. In particular,
concrete-typed client code is incompatible with values created by untyped code.
In short, academic researchers are working to close the performance gap without

overly restricting the promise of gradual typing. Industry researchers are sidestepping
the problem with unsound types— for the most part.
This paper reports an exception to the rule among industry-made gradual type

systems. The Static Python team at Instagram has developed a sound type system
for a subset of Python along with a runtime system that uses soundness to drive
optimizations. The language is staged to let programmers choose between easy
migrations and full-strength optimizations, a design that we call gradual soundness.
To a first approximation, there are three main stages:

1. A full language of shallow types that describe idiomatic Python code at a coarse
granularity. Adapting an untyped module to use shallow types requires at most a
few local code changes.

2. A second level of concrete types describes generic data structures that check the types
of their elements. If programmers modify their code to build concrete structures
instead of Python ones (a potentially nonlocal change), then Static Python can
perform deeper optimizations.

3. A third set of progressive types enable further optimizations. In particular, primitive

types allow for unboxed arithmetic.

Over the past year, Instagram has been applying gradual soundness to its primary
web server monolith. Although only a handful of modules use Static Python types
(hundreds among thousands), and only a few critical modules rely on concrete types
and primitive types (dozens), these migrations have resulted in a 3.7% increase
in production requests handled per second for servers running at maximum CPU
load. These results are very positive: Type-directed optimizations outweigh the cost

2:2

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

of enforcing soundness. Consequently, we believe the details of the Static Python
approach are of interest to the gradual typing community at large.

Contributions This paper makes two contributions:

Evidence. We present evidence that Static Python improves performance with few
code changes / refactorings. The Instagram web server has become significantly
more efficient thanks to a gradual application of Static Python to high-profile mod-
ules. Because the server code is closed-source, we additionally present data for four
public microbenchmarks (Section 6.4). Using only shallow types, Static Python runs
slightly faster than Python despite the costs of enforcing soundness (avg. 20%).
With fine-tuned types, Static Python consistently outperforms the Python base-
line (avg. 70%).

Mechanization. To validate the soundness of Static Python, we mechanized a core
language in PLT Redex and ran both property-based soundness tests and over 250
tests adapted from the Static Python regression suite. The modeling effort revealed
21 significant issues in Static Python, five of which were soundness bugs.

Outline This paper begins with an informal description of Static Python in two
parts. First, we present a user-oriented summary of the language (Section 2). Second,
we present the key ingredients of the runtime system, Cinder, that supports Static
Python (Section 3). Section 4 uses a small formal model to introduce our Redex mech-
anization and to demonstrate that Static Python is based on a sound core. Section 5
notes important aspects of Static Python that are not covered by the model. Section 6
evaluates Static Python; it reports our experience with the language in production
and on public microbenchmarks. The paper concludes with related work (Section 7)
and a final summary (Section 8).

Significance We have written this paper with two audiences in mind. First, we
want to encourage system-builders to reproduce the Static Python language design.
In particular, the maintainers of optionally-typed languages may wish to focus on
shallow types and JIT compilation as a first step toward sound and optimized gradual
types. Second, we want to entice researchers. The Static Python type system has many
noteworthy restrictions. For example, functions are supported only by shallow types,
and method overrides that use the dynamic type are more constrained than overrides
in untyped code. Some of these restrictions might be lifted by future research. Others
might be useful to adopt in new language designs.

2 A Tour of Static Python

Static Python is part of a large codebase that includes a type system, a tailored
bytecode, and a method-based JIT compiler. In essence, Static Python is the type
system for an entirely new language. The interface that it offers to programmers,
however, replicates the standard Python experience. Static Python runs Python 3.8

2:3

Gradual Soundness: Lessons from Static Python

1
2 def f(x):
3 return x["A"]
4
5 f({"A": 1})

→

1 from typing import Dict
2 def f(x: Dict[str, int]):
3 return x["A"]
4
5 f({"A": 1})

→

1 from __static__ import CheckedDict
2 def f(x: CheckedDict[str, int]):
3 return x["A"]
4
5 f(CheckedDict[str, int]({"A": 1}))

Figure 1 A first Static Python program and two migrations

programs with minimal changes to their behavior (Section 2.6), and it compiles code
on-the-fly to support existing IDEs and developer tools. The advanced features of the
Static Python type system are offered on an opt-in basis (gradual soundness, Section 2.7)
and arranged so that programmers can begin adding types one module at a time.
Figure 1 presents a first example program and two modified versions that utilize

Static Python types. The basic program defines a function f and calls it with a dictionary
value. Static Python can run this program as-is and even JIT-compile the function.
The other two versions use dictionary types:

The Dict type describes normal Python dictionaries in a shallow sense. At compile-
time, Static Python uses this type to find basic logical errors. At run-time, Static
Python enforces the type by checking that all inputs to f are dictionary values.
These checks enable additional optimizations within the function body.

The CheckedDict type describes a concrete dictionary data structure provided by
Static Python. Unlike Python dictionaries, these checked dictionaries are guaranteed
to contain well-typed keys and values even if they escape to untyped code. As the
body of f illustrates, the syntax for using a checked dict is standard. Creating a
checked dict, however, requires a type-parameterized constructor call.

These typed versions demonstrate the multi-level nature of Static Python. At one level,
there are types that describe standard Python values that can be added to a program
with little-to-no code changes. At the next level, Static Python offers special-purpose
types with stronger guarantees that impose nonlocal maintenance costs, such as
requiring edits to constructor calls.

2.1 Type System Context and Design Goals

The Static Python type system is a unique synthesis of ideas from the gradual typing
literature and prior work on types for Python. Its syntax for types is based on the
definitions in PEP 484 [63]. Its static semantics for types is inspired by optional type
checkers; in particular, Pyre [37] and mypy [57]. And its strategy for run-time checks
is adapted from Nom [39, 40], a research language with compelling performance
results. Static Python’s novelty comes from the following engineering constraints:

Performance is the bottom line. At the end of the day, Static Python needs to make
code run faster in production.

Critical code often relies on first-order functions and objects, at least in the Insta-
gram web server. Precise types for higher-order functions, for first-class classes,

2:4

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

and even for locally-defined functions and classes are thus a low priority; instead,
the dynamic type serves as a coarse approximation.

The codebase in which Static Python is being applied makes heavy use of PEP 484
type annotations and is regularly analyzed by Pyre. Static Python is therefore
compatible with the PEP 484 syntax to reduce the adoption burden.

A module-level granularity is acceptable. Once Static Python is enabled for a module,
it compiles all code in that module including expressions that have the dynamic
type (Section 2.2). If this behavior is problematic for certain expressions, they must
move to an untyped Python module.

In general, the types that Static Python implements all enable significant optimizations
and can be validated quickly with casts. Types that do not meet these criteria are
deferred to the mature optional type checkers that already exist for Python. In fact,
Static Python has no short-term plans to support all PEP 484 types.
The core supported types describe basic data (integers, booleans, strings), data

structures (lists, dicts, promises), and nominal classes. Union types are tracked stati-
cally; for example, if x is an integer and y is a string, then the expression x or y has a
union type. Unions also narrow down via type tests as a kind of occurrence typing [27,
61]. Union types are not, however, generally supported at run-time (Section 4.2).
The only exception is binary unions with the Python None type (Union[S,None], or
Optional[S]); these unions are enforced with run-time checks.
Three other unsupported types bear special mention: first-class class and object

types (Section 2.4); first-class function (callable) types; and recursive types. Pyre and
mypy have some support for the first two kinds, but no support for recursive types.

2.2 Type Dynamic

Static Python includes a dynamic type that allows untyped expressions within a
statically-typed context. Whenever an expression or variable lacks a type annotation,
Static Python uses the dynamic type as a default and skips most static checks. The
overall goal of this design is to let programmers add simple annotations to part of a
Python module while leaving the rest untyped.
In addition to unannotated positions, the dynamic type is also the default for

PEP 484 types that Static Python does not yet understand. For example, if existing
code uses the type Set[Int] for sets of integers, then Static Python replaces it with
dynamic. Thus, Static Python focuses on types that it can soundly optimize without
forcing programmers to remove types that other systems (e.g., mypy) can check.

The behavior of the Static Python dynamic type is subtle. Dynamic-typed code faces
more restrictions than untyped Python code. Because of the restrictions, replacing part
of a type with dynamic can lead to either a static error or a run-time error. Figure 2
presents two examples, one for each kind of failure:

Figure 2a presents a fully-typed class and a partially-typed subclass. The subclass
definition raises a compile-time error because it attempts to override the typed m
method to return the dynamic type.

2:5

Gradual Soundness: Lessons from Static Python

1 class A:
2 def m(self) -> int:
3 return 0
4
5 class B(A):
6 def m(self):
7 # Error: dynamic cannot override int
8 return 0

(a) SGG Violation: removing a type in the sub-
class B raises a static error

1 from __static__ import CheckedDict
2
3 def f(x: CheckedDict[str, dynamic]):
4 return x["A"]
5
6 d = CheckedDict[str, int]({"A": 1})
7 f(d)
8 # Error: f expected CheckedDict[str, dynamic]

(b) DGG Violation: removing part of the type
for the parameter x raises a dynamic error

Figure 2 Static Python provides neither the static (SGG) nor the dynamic (DGG) gradual
guarantees (assuming a standard type-precision relation)

Figure 2b sends a checked dictionary with integer values to a function that expects
dictionaries with dynamic values. At runtime, the function rejects this argument
because the two types are not an exact match.

These extra restrictions make the Static Python dynamic type different than the flexible
dynamic type provided by languages that satisfy the gradual guarantees [54]. But
they also enable efficient run-time checks for generics and type-directed optimizations
for method calls. Part of the reason Static Python weighs these benefits more heavily
than the gradual guarantees is that programmers have to opt-in to a feature in order
to risk the errors. The static error above comes only after enabling the Static Python
compiler on both a parent class and its subclass. The dynamic error comes only after
adopting a concrete type for checked dictionaries. In general, Static Python is less
interested in guarantees about removing an arbitrary annotation and more interested
in making sure that an untyped module compiles with minimal code changes.

2.3 Concrete Types and Shallow Types

Every Static Python type is paired with an efficient cast operation that runs in constant
time regardless of how large an incoming value is. Unlike structural gradual type
systems [23], no cast traverses an incoming value and no cast creates a wrapper to
monitor future behaviors. Some casts for generic types are, however, incomplete. We
call the types with incomplete casts shallow types and the types with full casts concrete
types, following the StrongScript authors [49].
First off, casts for non-generic nominal types are straightforward. Every type has

a name and every value has a tag that corresponds to the name. In the worst case,
a cast must examine the parents of a class to find a match, but these traversals are
bounded in length and typically short.

Generic types are more difficult to enforce because a tag by itself does not describe
their contents. For example, suppose that a function expects inputs that match the type
Dict[int,int]; that is, dictionaries with integer keys and integer values. A constant-time
check for Python dictionaries is not enough to protect the function against dicts with

2:6

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Table 1 Costs of using shallow and concrete dictionaries in typed (T) and untyped (U)
contexts relative to the number (N) of dict elements. A dash (—) means zero cost.

Cast T-Read T-Write U-Read U-Write

Dict O(1) O(1) — — —
CheckedDict[K , V] O(1) — — — O(1)

ill-typed elements. The Static Python solution is to provide a second kind of dictionary
that ensures the validity of its elements. These different values have different types:

1. The shallow type Dict gets enforced with a tag check for dict values that ignores
elements. Consequently, a parameterized surface type such as Dict[K , V] does not
promise anything about keys and values.

2. The concrete type CheckedDict[K , V] gets enforced with a check for concrete dicts
that have exactly the same key and value types. To implement such checks ef-
ficiently, Static Python stores a run-time registry of instantiated concrete types.
Every concrete dict carries a pointer into this registry to enable constant-time type
validation, even for nested concrete types.

These options keep run-time costs low and let programmers choose between concrete
and shallow types. This choice is one aspect of gradual soundness in Static Python.

Often, the shallow types are more attractive because concrete types impose nonlocal
changes. If one type changes to concrete, then several other changes may need to
happen: all values that reach this type must be initialized as concrete, all typed clients
of these values must expect concrete values, all values that reach those clients must
be concrete, and so on and so forth.
The upside of concrete types is that they enforce stronger type constraints. These

constraints can catch bugs and always lead to faster typed code. Faster performance is
not guaranteed in general, though, because concrete types must check all writes from
untyped contexts. For comparison, Table 1 presents the worst-case costs of shallow and
concrete dict types. Shallow types pay a constant-time cost for casts and whenever a
typed context reads from a shallow value. Concrete types pay nothing for reads, but
incur constant-time costs for casts and for writes from untyped code. If untyped code
frequently writes to a value (or equivalently, if untyped code initializes a huge value),
then shallow types may run faster.
Not all generic Static Python types have shallow and concrete versions at present,

though they are coming soon. In particular, user-defined classes do not have concrete
support. The shallow check for a user-defined class does, however, guarantee the
types of all non-generic fields and methods.

2.4 Gradual Class Hierarchies

One important feature of Static Python is that class hierarchies can mix typed and
untyped code. An untyped class can inherit from a typed one and vice-versa, letting
programmers add types to a single class independently of its ancestors and children.

2:7

Gradual Soundness: Lessons from Static Python

Gradual class hierarchies are rarely studied in the literature, especially for a lan-
guage where truly untyped classes can enter the mix. Thorn [67] and SafeTS [46],
for example, provide separate hierarchies for untyped and (gradually) typed classes.
The closest related work, for Nom [39], implements a flexible design inspired by the
gradual guarantees. In particular, Nom subclasses can override any part of a signature
with the dynamic type. Static Python implements a simpler design that restricts types
and inheritance:

1. To benefit from types, classes must be declared at the module top level and may
have at most one parent. Nested class declarations, first-class classes, and classes
with multiple parents default to un-optimized Python behavior (Section 5).

2. Methods cannot be overloaded. This restriction comes from Python.

3. Non-final methods and fields may be overridden in arbitrary ways by untyped code.
In typed code, however, overrides cannot use less-precise types. For example, a
method that returns a number cannot be overridden by a method that returns the
dynamic type; Figure 2a shows the static error that arises from such an override.

4. Typed fields cannot be overridden by descriptors or properties (@property).

With this context in mind, Static Python keeps track of whether each class is typed or
untyped. Typed classes can assume that if a method has a precise (non-dynamic) type,
then all typed overrides are subtypes of this type. This property enables optimized
dispatch from typed callers to typed methods and optimized field reads. Other method
and field accesses typically incur one run-time check. An extra step arises when an
untyped method overrides a typed method. In this case, Static Python creates a wrap-
per around the overriding method to check that it computes type-correct results. The
wrappers are handled efficiently by a tailored implementation of vtables (Section 3).

2.5 Progressive Primitive Types

For performance-critical applications, Static Python includes a set of primitive types
that describe booleans and sized numbers. Example types include int64, uint64, dou-
ble. There are also two special datatypes, Array and Vector, that store primitives.
The purpose of these types is to allow unboxed values and arithmetic at runtime.
Consequently, their static semantics is a progressive [44] refinement over the semantics
of basic Python types: they permit fewer behaviors statically to enable the unboxing.
Operations such as and (boolean conjunction), for example, do not accept a mix of
primitive and non-primitive arguments. These primitive types are another central
aspect of gradual soundness.
Because performance is the top priority for primitive types, they are intentionally

incompatible with the dynamic type. Casts between a primitive type and the dynamic
type are rejected statically—another violation of the gradual guarantee— to encour-
age the spread of primitives in typed code. At the boundaries to untyped Python code,
however, Static Python inserts casts. These casts let programmers introduce primitive
types in one module without having to rewrite its untyped dependents.

2:8

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

2.6 Behavioral Changes to Python

Relative to Python, Static Python makes a few behavioral changes to enable sound
types and strong optimizations: module-level variables cannot be mutated; class
attributes must be set in an __init__ method to ensure predictable layouts (all PEP 484
checkers agree on this); typed attributes are resolved statically, and thus cannot be
overridden with descriptors or properties; and multiple inheritance of either typed
classes or untyped children of typed classes is forbidden.

Several other Python features are unsupported at present: enums; the @dataclass
decorator; overrides of the __setattr__ and __getattr__ methods; keyword arguments
with default expressions (rather than values); and calls to keyword functions that use
**kwargs with either a custom object or a dict with extra keys. The Static Python team
plans to lift these restrictions in the future.

2.7 Gradual Soundness

Static Python represents a new approach to the design of gradually-typed languages.
Whereas prior works choose to either force changes upon untyped code with concrete

types [39, 67] or accommodate untyped code as-is with migratory types [52, 62],
Static Python provides a multi-level type system that supports both styles without
expensive run-time checks. Shallow types accommodate Python code, but offer little
in the way of type-based reasoning and type-directed optimization. Concrete types
and primitive types give stronger type guarantees, but have drawbacks: concrete types
force changes upon untyped code and primitive types add restrictions to typed code.
The overall system, in which programmers can choose between untyped code and
several increasingly-restrictive typed languages, is a combination of gradual typing
and progressive types [44] that we call gradual soundness.
Compared to traditional gradual typing, gradual soundness is a refinement. The

original gradual typing vision is to find a best-of-both-worlds combination of typed
and untyped code [24, 35, 52, 60]. Gradual soundness fits under this broad umbrella,
and contributes the idea that multiple type systems may be needed for an optimal
mix. Gradual typing in the refined sense [54] calls for a dynamic type that satisfies
the gradual guarantees. A gradually-sound language may choose to satisfy these
guarantees. Static Python, however, does not (Section 2.2).

3 Runtime System Highlights

The Static Python runtime system, formally known as Cinder, extends CPython 3.8 in
several ways to take full advantage of static types. Cinder includes tailored bytecode
instructions, virtual method tables, concrete datatypes, a registry of typed modules,
and a JIT compiler. These main ingredients of Cinder may be of interest to other
teams seeking to add sound gradual typing to an existing language. For example,
Node developers may wish to fork V8 and experiment with bytecode instructions that
leverage sound static types.

2:9

Gradual Soundness: Lessons from Static Python

Bytecode Instructions All CPython 3.8 instructions have the same behavior in Cinder.
Cinder adds instructions to help with one of three tasks: expressing runtime checks,
initializing concrete-typed values, or efficiently performing a standard action. As an
example of the third kind, the FAST_LEN instruction quickly computes the length of a
built-in value, which helps to optimize loops. Static Python uses type information to
decide where this instruction is appropriate and applies it as an optimization.

Virtual Method Tables Cinder adds virtual method tables (vtables) to classes. These
tables help to speed up method dispatch relative to Python’s dynamic lookup. Calls to
static methods that appear in statically-typed code use the vtable to find an address
for the method. If the method is part of a final class, then the call is further optimized
to a direct function-call jump. (Both vtable lookup and direct jumps are supported by
Cinder-specific bytecode instructions.)

The implementation of vtables is built on the Python vectorcall protocol; it is not a
from-scratch development. Cinder vtables are further specialized to check untyped
overrides of typed methods using a wrapper implemented in C (rather than in Python)
to reduce performance costs.

Concrete Data Structures The concrete versions of built-in data structures come with
both a type and an implementation. The implementation provides the same interface
as the built-in, but uses type tags to reject certain operations.

For example, the type CheckedDict[K , V] describes a concrete dictionary with keys
of type K and values of type V . The implementation has three main components:

The constructor requires two type parameters and a Python dictionary (a Dict). It
checks that the elements of the dictionary match the key and value types.

All untyped writes must be protected by casts. Every operation that mutates or
extends a checked dictionary must validate any untyped arguments that it receives.

The dictionary value stores a type tag to support casts from the dynamic type. A tag
represents a three-part type CheckedDict[K , V] and is implemented as a pointer
into a global registry of instantiated types. When a concrete dictionary enters typed
code from an untyped context, its tag must match the expected type exactly. For
example, type CheckedDict[K , V] matches the type CheckedDict[K ′, V

′] only if K

is equal to K
′ and V is equal to V

′.

In general, other checked datatypes have the same three components: a constructor,
a set of checked update functions, and a tag. The tag is supported by a global registry
of instantiated concrete types.

Classloader Static Python keeps track of typed functions and typed classes with a
specialized classloader. At runtime, the classloader keeps a registry of typed objects.
The registry helps the bytecode reference objects and types via their module names.

Method-at-a-Time JIT Cinder includes a JIT (just-in-time) compiler for its bytecode.
Programmers can enable the JIT by supplying a list of method names to the compiler.

2:10

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Any method can be JIT-compiled whether or not it uses Static Python types, though
fewer types usually result in fewer optimizations.

4 Model

To validate the design of Static Python, we developed a model of the language in PLT
Redex [28]. The model covers a substantial part of the Python language, including
assertions, loops, exception handlers, and delete statements. It follows Static Python’s
approach to typing these features. The model is on GitHub (accessed 2022-05-17):

https://github.com/brownplt/insta-model

Because there is no prior formalization of (all of) Python and of Static Python, we
cannot verify that the model matches them. Instead, we have applied three methods to
give confidence that our model matches reality. First, we manually reviewed the model
in depth—using our own expertise— to look for non-conformance. Second, we used
Redex’s property-based testing tools [29] to check type soundness. Specifically, we
used Redex to generate well-formed terms (using its default algorithm) and checked
whether the well-typed terms that terminated within a fixed time budget (1,200
expressions and 11,000 programs in a typical run) produced only well-typed values
and allowed errors. Finally, we employed the well-established method of testing end-
to-end conformance with a test suite [5, 14, 26, 42, 43]. We translated 265 tests from
the Static Python regression suite to the syntax of the model and confirmed that the
results do match, which suggests that the model conforms to actual Static Python.
For most of the 265 tests, the translation is automatic. A few tests required hand-

pruning to remove features that the model does not handle (52 total). Static Python
has 537 other tests (802 total) that we did not use because they fall outside the scope
of the model. Section 5 summarizes the out-of-scope features and Appendix C gives a
detailed categorization.

The Payoff: Issues Reported The modelling process helped uncover several critical
issues in Static Python. This is a very important payoff given that Static Python is
running in production at Instagram. Overall, we made 26 bug reports (Appendix A) to
the Static Python team via GitHub. Five of these were soundness issues, one of which
we could exploit to raise a segmentation fault. All of these soundness bugs have been
fixed. Of the remaining issues, five were relatively minor; these dealt with confusing
error messages and incorrect tests. The remaining 16 issues report bugs in language
design and implementation. The Static Python team has acknowledged these as bugs
by applying a specific GitHub label: sp-correctness.

To give one example issue, Static Python incorrectly accepted the following program
whereas our model reported a type error:

2:11

https://github.com/brownplt/insta-model

Gradual Soundness: Lessons from Static Python

1 from typing import Optional
2
3 def f(x: Optional[str]) -> str:
4 while True:
5 if x is None:
6 break
7 return x

The function f expects either a string or the None value and promises to return a
string. When called with None, however, the function breaks out of the while loop
and implicitly returns None contrary to the return type. Static Python had failed to
account for the break and implicit return. More concerningly, the associated test case
expected the program to type check. Our model caught this specification error.

Section Outline The rest of this section illustrates our Redex model using a tiny
formalization to highlight the boundaries between typed and dynamic-typed code.
Section 4.1 presents a surface syntax. Section 4.2 explains how types get enforced at
run-time. Section 4.3 argues that the overall approach toward boundaries is sound.

4.1 Surface Syntax and Types

Figure 3 presents a core syntax for programs. A program is a sequence of statements; a
statement defines a variable, function, or class. These definitions may only appear on
the top level and they all require type annotations. Functions must have one positional
argument. Classes must declare one parent (either Object or another class), one field,
and one method. Expressions describe values and simple computations. The basic
values are the none value, integers, booleans (which are the integers 0 and 1), and
strings. There are two data structures: dictionaries and checked dictionaries (Sec-
tion 2.3). Other expressions describe function calls, dictionary reads and writes, object
creation, object field reads and writes, and method calls.

In Python, the syntax for expressions overlaps with the syntax of types. For example,
the Python name None is both an expression and a type, and the Static Python names
chkdict and CheckedDict are synonyms. Figure 3 does not follow these standards.
Instead, it keeps the two syntaxes distinct. Expressions use lowercase names (none,
chkdict) and types use capitalized names (None, CheckedDict).
Surface types S include the dynamic type, types for the basic values, one type C

for every user-defined class, and union types. We choose to write the dynamic type
as Dyn for simplicity; technically, Static Python does not have a surface syntax for
its dynamic type and instead allows missing types (Section 2.2). We assume that all
unions are written in a flat and simplified form, e.g., that Union[Int,Union[Dyn,C0]]

would be normalized to Dyn.
Static Python does not enforce all surface types against untyped code, only the

evaluation types presented in the next subsection (Section 4.2). For this reason, we
omit the surface typing judgment, which is a kind of linter that merely scans typed
code for logical errors.

2:12

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

prog = stmt | stmt, prog

stmt = x:S= expr | def f (x:S) -> S : expr |

class C (C) : x:S= expr; def f (self, x:S) -> S : expr

expr = x | none | int | bool | str | f (expr) |
{x : expr, . . . } | chkdict[S,S] ({x : expr, . . . }) |
expr[expr] | expr[expr] = expr |

C (expr, . . .) | expr.x | expr.x= expr | expr.f (expr)

S = Dyn | None | Int | Bool | Str | C |

Dict[S,S] | CheckedDict[S,S] | Union[S, . . .]

Γ = · | x:S, Γ | f (S) -> S, Γ | class C (C) : x:S; f (C,S) -> S, Γ

x, f = variable names

Abbreviation: Optional[S] = Union[None,S]

Convention: the set of all class types C contains the top type Object

Figure 3 Surface syntax and types

T = Dyn | None | Int | Bool | Str | C |

Dict | CheckedDict[T,T] | Optional[T]

R (S0) =















Dict if S0 = Dict[S,S]

Optional[R (S1)] if S0 =Optional[S1]

Dyn if S0 = Union[S, . . .] and S0 6=Optional[S]

CheckedDict[R (S1), R (S2)] if S0 = CheckedDict[S1,S2]

S0 otherwise

Figure 4 Evaluation types, Surface-to-Evaluation mapping

Relative to Static Python and our Redex mechanization, the formalization in Figure 3
omits many details of Python including class variables, imports, conditionals, and
exception handlers. These details are crucial in the mechanization, which tests whether
Static Python soundly approximates Python. They are less important here, where our
focus is on type boundaries. None of the omitted features give substantially new ways
for typed code to interact with dynamic code.

4.2 Evaluation Types, Casts, and Typing Judgment

Evaluation types T are a simplification of the surface types. These are the types that
Static Python promises to soundly enforce. Figure 4 presents the syntax of evaluation
types and a retraction R (·) from surface types to evaluation types. As the retraction
shows, the evaluation types make two main changes:

1. The parameterized type for Python dictionaries Dict[S0,S1] gets replaced with a
raw type Dict. The raw type behaves the same as Dict[Dyn,Dyn] would.

2:13

Gradual Soundness: Lessons from Static Python

Table 2 Description of run-time checks for the evaluation types

Eval. Type T Run-time check

Optional[T0] Accepts either the none value or values that match T0

Dict Accepts any Python dictionary
CheckedDict[T0,T1] Accepts checked dictionaries parameterized by T0 and T1

Dyn No check needed, accepts any value
C0 Accepts instances of the class C0

*

None Accepts the Python none value
Int Accepts integers and booleans
Bool Accepts booleans
Str Accepts strings

* In full Static Python, the check for Object accepts all values except for primitives (Section 2.5)

2. Unions get replaced with the dynamic type, except for the special case of unions
with none (Optional[S0]).

4.2.1 Casts
Static Python evaluation types can all be enforced fully and efficiently with casts.
Table 2 describes the casts in detail. Most call for a tag check, i.e., a Python isinstance
test. The sole exception is optional types, which require a tag check and a test for the
none value. Checked dictionaries also rely on tag checks; a checked dict type with
keys T0 and values T1 accepts only checked dict values that were initialized with
exactly the same key and value type. As noted in Section 2.2, this exact-match rule
applies even when T0 or T1 is the dynamic type.

No cast requires traversing a data structure. Similarly, no cast allocates a wrapper
to check higher-order behaviors in a delayed fashion. This latter property means that
blame-tracking [12] is trivial because casts either succeed or fail immediately. In other
words, Static Python provides the same immediate accountability as Nom [39].

4.2.2 Expression Typing, Cast Insertion
To show where Static Python needs to insert casts, we present a selection of typing
rules. Recall that a program declares variables, functions, and classes (Figure 3). These
declarations fill a type environment (Γ). Relative to the current environment, the
expressions within each statement must satisfy the typing judgment in Figure 5.
By contrast to our Redex model, the typing judgment outlined in Figure 5 does

not describe a typechecking algorithm. It is rather a declarative set of rules chosen to
illustrate two points: how Static Python reasons about data structure types and how
it enforces promises made via the dynamic type. The key steps that the Redex model
takes to turn these rules into an algorithm is to remove the two coercion rules (both
are marked with asterisks: C-Sub* and Matr*) and to allow restricted coercions at
elimination forms. For example, a function application may apply either consistent
subtyping or materialization to its argument. It cannot apply both kinds of coecion
because that can be abused to delay any static error until run-time.

2:14

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Γ ⊢E expr : T selected rules

S-App

f0 (T0) -> T1 ∈ Γ

Γ ⊢E expr0 : T0

Γ ⊢E f0 (expr0) : T1

D-App

f0 :Dyn ∈ Γ

Γ ⊢E expr0 : Dyn

Γ ⊢E f0 (expr0) : Dyn

D-Set

Γ ⊢E expr0 : Dict

Γ ⊢E expr1 : Dyn

Γ ⊢E expr2 : Dyn

Γ ⊢E expr0[expr1] = expr2 : None

CD-Set

Γ ⊢E expr0 : CheckedDict[T0,T1]

Γ ⊢E expr1 : T0

Γ ⊢E expr2 : T1

Γ ⊢E expr0[expr1] = expr2 : None

F-Set

Γ ⊢E expr0 : C0

x0 :T0 ∈ Γ
∗ (C0)

Γ ⊢E expr1 : T0

Γ ⊢E expr0.x0 = expr1 : None
M-App

Γ ⊢E expr0 : C0

f0 (C0,T0) -> T1 ∈ Γ
∗ (C0)

Γ ⊢E expr1 : T0

Γ ⊢E expr0.f0 (expr1) : T1

C-Sub*

Γ ⊢E expr0 : T1

Γ ⊢ T1 ⊑ T0

Γ ⊢E expr0 : T0

Matr*

Γ ⊢E expr0 : T1

T1 ≺ T0

Γ ⊢E expr0 : T0

Where Γ ∗ (C) collects field and method types from C and from its parents

Γ ⊢ T⊑ T

Γ ⊢ T0 <: T1

Γ ⊢ T0 ⊑ T1 Γ ⊢ T0 ⊑ Dyn

T≺ T

Dyn≺ T0

T0 6= Dyn

Γ ⊢ T≤: T reflexive, transitive closure of the following <: relation:

Γ ⊢ T0 <: Object Γ ⊢ Bool<: Int

Γ ⊢ T0 <: T1

Γ ⊢Optional[T0]<: Optional[T1]

Γ ⊢ None<: Optional[T0]

Γ ⊢ T0 <: T1

Γ ⊢ T0 <: Optional[T1]

class C0 (C1) : . . . ; . . . ∈ Γ

Γ ⊢ C0 <: C1

Figure 5 Expression typing, consistent subtyping, and materialization

2:15

Gradual Soundness: Lessons from Static Python

The first two typing rules are for function application. A typed function may be
applied to an argument that matches its domain type, in which case it computes a
value that matches its codomain type. A dynamically-typed variable may be applied to
any input to yield a dynamically-typed result. The following rules illustrate writes to
Python dictionaries and checked dictionaries. A shallow Python dict may be updated
with any kind of key and value. By contrast, a concrete checked dict requires keys
and values that match its type parameters. Next we have two rules for classes: F-Set
says that writes to a class field must match the declared field type; and M-App shows
that typed methods impose similar constraints as typed functions.
The final two rules, C-Sub* and Matr*, depend on auxiliary judgments for

consistent subtyping (⊑) and materialization (≺). Consistent subtyping relates type
T0 to type T1 if they are related by static subtyping (≤:) or if T1 is the dynamic type.
Materialization relates the dynamic type to any non-dynamic type. Occurrences of
the Matr* rule are downcasts that require a run-time check.
The name materialization and the rule Matr* are inspired by prior work [6].

By itself, the judgment is merely an upside-down type precision relation [15, 53].
Combined with the typing rule, however, materialization is a concise way to find
where a well-typed program needs casts to ensure soundness. For example, suppose
that f is a function from integers to the dynamic type and that x is a variable with the
dynamic type. An application f (x) can satisfy the type Str using two materializations:

Matr*

Matr*

Γ ⊢E x : Dyn Dyn≺ Int

Γ ⊢E x : Int

Γ ⊢E f (x) : Dyn Dyn≺ Str

Γ ⊢E f (x) : Str

Where Γ = x:Dyn, f (Int) -> Dyn

Consequently, this derivation calls for two casts at the Matr* applications.

We end here, with materialization, rather than present a semantics for the formal-
ization. After all, the main benefit of a full formal semantics is to validate the behavior
of complex expressions—and this job is better left to the Redex mechanization, which
supports a much larger subset of Python (Section 4.1).

Furthermore, our casts-via-materialization rule assumes that the type checker has
access to the whole program. In practice, Static Python approximates our ideal casts
in two steps to support interactions with unanalyzed Python modules. First, Static
Python inserts casts in an overapproximate way:

typed functions and methods begin by checking all their arguments;

typed classes check all field writes;

concrete-typed dictionaries check all key and value writes; and

typed code checks the results of function calls, references, and other elimination
forms whenever there is a materialization from the dynamic type.

2:16

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Second, the type-directed optimizer skips these casts wherever a well-typed context
interacts with a typed value. Section 5 explains the optimizer in more detail.

4.3 Type Boundary Soundness

The soundness of our model is easily seen by reduction to Nom, a gradual language
that allows fine-grained interactions with untyped code and comes with a detailed
proof of soundness [39, 40]. Given a program written in the syntax of Figure 3, one can
derive a Nom program with the same type boundaries by replacing every checked dict
instance with a fresh class type. Because distinct checked dict types are incompatible,
the original boundaries impose the same constraints as the translated Nom ones.

For interested readers, we offer the following direct argument as well. Boundaries
to less-typed code would be unsound if an untyped (or partially-untyped) value could
enter a typed context without a validating check. The question is thus whether all
boundaries are properly guarded. Our answer has two parts. First, observe that every
evaluation type comes with a decidable cast (Table 2). For basic types such as strings,
a tag check clearly suffices. For parameterized types such as CheckedDict[T0,T1],
the exact-match semantics is also decidable (and also implemented with tag checks).
Second, observe that boundaries can only relate the dynamic type to an evaluation
type; there are no significant boundaries that relate a partially static type to an
evaluation type. This is due to the exact-match semantics for checked types and the
fact that Optional[Dyn] normalizes to the dynamic type. Therefore, inserting casts at
static occurrences of the materialization rule is enough to protect all boundaries.

5 Scaling to Python

The Redex model intentionally does not cover all of Python. Some aspects of Static
Python are left out because they are straightforward to handle. These include primitive
types (Section 2.5), module-level variables, and the boundary to untyped Python (Sec-
tion 5.1). Other Python features are left out because their Static Python semantics
is identical to standard Python (Section 5.1). Our model also does not cover the
optimizer (Section 5.3) because a formal account of type-directed optimization would
require substantial additional components; namely, a model of the Static Python
bytecode and a faithful rendering of its transformations.

5.1 Interactions with Open-World Python Code

Although Static Python is technically a new language, it is designed for gradual
adoption. Python programmers should be able to add types module-by-module to
an existing codebase. Consequently, Static Python supports interactions with Python
modules by letting the Python code run with zero static constraints and minimal
dynamic constraints.
There are two cases in which Static Python types impose dynamic constraints on

untyped Python code. First, concrete types (e.g., CheckedDict) reject inputs that

2:17

Gradual Soundness: Lessons from Static Python

were not created via a checked constructor. If a client of a Python module decides
to impose concrete types, the Python module may need to change. Second, typed
modules prevent updates to module-level variables.
Interactions with open-world [66] Python code pose a minor threat to soundness

because typed functions (and methods) cannot assume that their arguments are well-
typed. All arguments sent from typed contexts get validated either statically or via
materialization casts, but arguments from untyped contexts are unchecked. For this
reason, Static Python compiles every typed function to check its inputs. The optimizer
can bypass these checks for typed-to-typed calls (Section 5.3). Similarly, concrete
types such as CheckedDict must check writes that come from untyped contexts.

5.2 Dynamic Python Features

Static Python does not ascribe types to the following Python features. These are not
covered in the model because the implementation simply assigns the dynamic type
and lets the runtime treat them as untyped Python code. For each, the dynamic type
is a reasonable choice; accurate static types would be burdensome to maintain.

First-Class Classes Static Python does not attempt to type first-class classes: partly
because they have yet to appear in performance-critical code in the Instagram web
server and partly because they do not fit well with a nominal type system. The
straightforward but restrictive approach for first-class nominal class types is to force
code that uses a first-class class to expect subtypes of a particular named static class.
Flatt et al. [13] propose a more flexible approach, but it requires a second layer of
interface types atop the nominal hierarchy. MonNom [40] uses interfaces in a similar
way to accommodate structural objects.

On a related note, Static Python has no support for first-class functions or for
structural types as defined by PEP 544 [31]. Interfaces may be a promising way to
support these types.

Multiple Inheritance Python allows classes to inherit from a list of parents. Static
Python accommodates this behavior provided that at most one parent is typed (or
uses __slots__ to specify its layout; plain Python has the same restriction).
Static Python does not leverage types for classes with multiple parents because of

vtable layout issues. Efficient vtable dispatch requires that each method name resides
in a fixed slot across all subclasses. With multiple inheritance, however, parents
may disagree about which method lives in each slot. Similarly, Static Python cannot
optimize instance variable reads because their slots may have a conflict among parents.

Dynamic Execution Calls to eval and exec have the dynamic type. Studies of JavaScript
and R have shown that many uses of dynamic execution can be removed through
simple adjustments [17, 36, 48]. Assuming these findings carry over to Python, similar
adjustments would be preferable over attempting to type eval.

2:18

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Table 3 Representative Cinder bytecode instructions

Instruction Purpose Description

CAST Soundness Assert that a value matches a type
CHECK_ARGS Soundness Cast all inputs to a function

BUILD_CHECKED_MAP Constructor Make a checked dictionary
TP_ALLOC Constructor Make a Static Python object

INVOKE_FUNCTION Optimization Execute a direct function call
INVOKE_METHOD Optimization Execute a method via the object’s vtable
LOAD_FIELD Optimization Read an object field
STORE_FIELD Optimization Write to an object field
FAST_LEN Optimization Get the length of a built-in value
REFINE_TYPE Optimization Type declaration for the JIT

5.3 Bytecode and Optimizations

Static Python can generate efficient code because it targets the Cinder runtime. Cinder
provides bytecode instructions that check types at run-time, construct Static Python
data structures, and perform type-directed actions. Table 3 lists a few representa-
tive instructions. The two instructions that express run-time checks are CAST and
CHECK_ARGS. The former checks a value against a type. The latter is for functions and
methods; it checks all inputs to a function against their declared types. The instruc-
tions BUILD_CHECKED_MAP and TP_ALLOC allocate Static Python-specific data structures.
The first creates a checked dictionary; the second allocates an uninitialized instance
of an object (Section 3). Cinder comes with a similar instruction to build checked
lists. The remaining instructions are for optimization. Both INVOKE_FUNCTION and
INVOKE_METHOD are alternatives to Python’s dynamic call dispatch. The former uses
the classloader to quickly find the address of a function; the latter uses a vtable lookup
to find a method. The load and store instructions for fields improve upon Python’s
generic attribute lookup. In the JIT, these instructions can be further optimized to a
single assembly instruction. Lastly, the REFINE_TYPE instruction tells the JIT about the
type of a local value when it is not clear from the context.

Reducing Casts In addition to upgrading bytecode instructions to optimized ones,
Static Python takes care to minimize the type casts that it executes at run-time. In
other words, it takes care to slow code down as little as possible.
Part of this goal is met by inserting casts only in positions where the dynamic

type flows into a static type. The materialize rule in the model illustrates this policy,
which ensures that well-typed writes to classes and to concrete dictionaries have no
cost. Typed functions, however, are compiled with a CHECK_ARGS instruction that
defensively casts all arguments. By convention, this instruction always appears on
the first line of a typed function body. The optimizer uses this convention to skip

2:19

Gradual Soundness: Lessons from Static Python

argument checks by jumping past them when it is safe to do so; that is, whenever a
typed function or method gets called in a typed context.

6 Production Experience

The Instagram web server has been using Static Python code to serve requests in
production since April 2021. Overall, the results are very encouraging. Instagram’s
internal profiling tools attribute a 3.7% improvement in CPU efficiency (Section 6.1) to
Static Python conversions (Section 6.2). This is a big improvement at Instagram scale.

Developers have converted over 500 modules to Static Python thus far. Despite some
initial regressions, none of the converted modules ran slower after small rewrites (Sec-
tion 6.3) and/or enabling the JIT on certain functions. Only 9 modules use concrete
types and only 12 modules use primitive types, but these features delivered critical
performance gains in key modules.

6.1 How to Interpret the CPU Efficiency Result

The Instagram web server code runs on a large number of host machines, each of
which continuously handles requests from a common pool. Improvements to the server
codebase should make these machines more efficient as they handle arbitrary requests.
To measure the effect of a code change on these hosts, an internal profiling tool

selects two representative sets of machines to run as experimental and control groups.
The experimental group gets the latest version of the server code; the control group
gets the previous version. Next, the profiling tool slowly increases the number of
requests that these machines receive until each is running at maximum load. Once
the machines are fully allocated, the tool measures how many requests per second
each group is able to handle. If the experimental group can serve more requests per
second, then the change is a success. Assuming that the experimental and control
groups have equivalent hardware capabilities, and assuming that both groups receive a
representative sample of requests, then the results of an experiment (increase/decrease
in CPU efficiency) should predict actual performance.
The one caveat with this CPU efficiency measure is that it is pinned to a specific

point in time. Changes in product code and in client behavior can change the size
of a typical web server request, which changes the number of requests that a server
can handle per second. Taking the sum of several CPU efficiency changes over a long
timespan (as we have done) is therefore only a rough measure of their net effect.

6.2 Migration Path

Static Python first entered the web server codebase as a replacement for a few critical
Cython modules. Cython had improved performance by compiling these modules to
C, but its partial adoption led to an awkward workflow with a few compiled modules
spread across an interpreted codebase. Replacing these modules with Static Python let
programmers return to a conventional Python workflow. Furthermore, Static Python

2:20

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

types combined with Cinder resulted in a 0.7% improvement in web server CPU
efficiency. Primitive types (Section 2.5) were essential for matching Cython.
Later Static Python migrations have been directed by profiling to find frequently-

executed code. During the first half of 2021, the Static Python team identified hot
modules and proposed types plus small code changes to the maintainers of these
modules (Section 6.3). The accepted proposals resulted in a 1% improvement in CPU
efficiency. During the second half of 2021, the Static Python team applied the same
process at a larger scale. They also modified a code-generating module to output
Static Python code; this one change resulted in over four hundred generated typed
modules. Overall, the second-half changes added 2% to the number of requests that
servers could handle per second at maximum CPU load.
As of December 2021, the Static Python team has converted 541 modules. Most of

these came from the code-generating tool (417); the rest are from hand conversions
(124). These modules frequently interact with untyped modules in the codebase.
According to an analysis of identifiers that cross module-dependence boundaries, over
30,000 identifiers go between typed and untyped code. Two-thirds of these crossings
are exports from Static Python modules to untyped modules; in other words, typed
identifiers are widely used throughout the web server.

6.3 Analyzing Code Changes

Because the Static Python team has been changing code as well as types during its
migrations, the question arises as to whether the refactoring caused more speedups
than the types and gradual soundness. We therefore reviewed 30 conversion diffs that
significantly improved performance to assess the extent of the code changes. Across
the diffs, there are nine common kinds of changes: five that satisfy the type checker
and four that aim to improve performance.

6.3.1 Code Changes for the Type Checker
1. Fix type errors due to mock wrappers. When test code uses a mock wrapper, it may

change the return type of a function because wrappers return a MagicMock object
by default. The fix is to specify a return value.

2. Change mocked function to expect positional arguments. Static Python currently
rewrites the bytecode for all typed-to-typed function calls to use positional argu-
ments. Mock-wrapped functions therefore need to use positional arguments.

3. Organize class and instance attributes. Whereas Python allows class attributes to
serve as default values for instance attributes, Static Python does not.

4. Move unsupported Python features. Code that uses the unsupported features listed
in Section 2.6 must be changed or moved to an untyped module.

5. Refine some Pyre annotations. Well-typed Pyre code is not always well-typed Static
Python code. Appendix B lists the main points of friction.

2:21

Gradual Soundness: Lessons from Static Python

Table 4 Microbenchmark performance ratios

Name Typed / Python Refined / Python

deltablue 0.59 0.30
fannkuch 1.03 0.46
nbody 1.09 0.24
richards 0.53 0.22

6.3.2 Code Changes for Performance
1. Use primitive types. Integers and booleans in hot code paths run fastest with primitive

types (Section 2.5). Twelve modules currently use primitives.

2. Use concrete types. Three modules currently use a concrete dictionary type (of the
form CheckedDict[K , V]) and six modules use a checked list type.

3. Change functions to accept positional arguments. Functions calls that use only key-
word arguments are not yet optimized by Static Python.

4. Convert@classmethod to@staticmethod. Static methods can get invoked directly
as functions, bypassing the class vtable. Twenty-four modules use static methods
(many of these pre-date Static Python).

6.3.3 Conclusion
In general, the patches responsible for performance gains contain minor code changes
and affect test code rather than production code. We conclude that the addition of
Static Python types to a codebase can significantly improve performance without major
refactoring, and that refactoring is not the main reason for Instagram’s speedups.

6.4 Microbenchmarks

Table 4 compares Static Python to Python on public microbenchmarks [59]. These
microbenchmarks are admittedly small and quite different than typical application
code, but they provide an auditable and reproducible way to measure performance.
Each row presents two ratios. The first compares a simply-typed version of the

benchmark to untyped Python code. The second compares a hand-refined benchmark
to untyped Python. The refinements are modest, mostly adding primitive types to hot
loops. All runtimes for this table came from a 64-bit CentOS Linux system using a build
of Static Python and Cinder compiled with default settings. Each benchmark version
ran 11 times total: once to warm up the bytecode caches (.pyc files) and 10 times
to compute an average runtime (using the time utility). Every benchmark version
invoked the JIT on the same set of functions. Appendix D presents further details.

Almost all ratios are less than one, showing that Static Python achieves a speedup
over Python (typed avg. 0.8, refined avg. 0.3). The exceptions are the unrefined
versions of fannkuch and nbody, which is because these benchmarks focus on number-
crunching and Static Python optimizes arithmetic only for primitive types. Changing
a few types in fannkuch to primitives gives an immediate speedup (ratio = 0.90).

2:22

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Threat to Validity Table 4 does not analyze benchmark configurations that mix typed
and untyped code. A study of mixed configurations (e.g., [22, 23]) may reveal perfor-
mance bugs that have not appeared in production.

7 Related Work

Concrete types originated in Thorn [4, 67] and StrongScript [49], two early languages
that support typed and untyped objects. Thorn is a scripting language for the JVM;
StrongScript is designed to interoperate with JavaScript. Concrete types came to
Static Python by way of Nom [39] and its successor MonNom [40]. The impressive
performance figures in the original Nom paper inspired the Static Python team to
adapt the method. But whereas MonNom has been exploring designs for generic
concrete types that support (a flexible form of) the gradual guarantees [54], Static
Python opts for a simpler and more rigid design (Section 2.2).
With its mix of shallow and concrete types, Static Python is one of a few gradual

language that lets programmers choose between multiple type-enforcement strategies.
Thorn and StrongScript offer a choice of concrete types and optional (unsound) like
types. Typed Racket supports deep (structural) types, shallow types, and optional
types [20]. By contrast to these others, Static Python asks programmers to change
their code in way that reflects changes to the types (Section 2.3). The changes im-
pose a maintenance burden, but enable performance improvements and an efficient
implementation of run-time checks.

Many aspects of our Redex model for Static Python are adapted from the Full Monty
core calculus for Python [43]. In particular, the Full Monty paper reminded us that
booleans are integers in Python; Static Python had overlooked this detail.
Production experience with Static Python suggests that a method-based JIT can

eliminate the costs of shallow types. This finding complements prior work. In the
context of shallow types, the pypy tracing JIT improved Reticulated [65] and the
Graal partial-evaluation-based JIT improved Grace [16, 50]. In the context of concrete
types, the HiggsCheck VM improved an implementation of SafeTypeScript [46, 47].
And in the context of deep/guarded/structural types, the Pycket tracing JIT greatly
reduced the costs of higher-order checks in Typed Racket [1].

Static Python is one of many type systems for Python. Other optional type checkers
include Pyre [37], mypy [57], PyType [18], and Pyright [38]. These checkers use types
only for static analysis; optional types have no effect (positive or negative) at run-
time. Another sound type system is Reticulated, which enforces structural types and
pioneered the transient semantics [64, 66]. A rigorous comparison of Reticulated and
Static Python is an important topic for future work. We conjecture that adapting code
to Reticulated requires fewer edits than Static Python but delivers slower performance.
Optimizing type systems for Python include Reticulated and mypyc [58]. The latter
compiles Python source to C extension modules; it does not offer a pure-Python
developer experience.
Although sound gradual types are rare in industry, there are at least three other

languages that provide them. Dart 2 is a nominally-typed language with a dynamic

2:23

Gradual Soundness: Lessons from Static Python

type that is similar to a top type but statically allows all method calls [56]. C# has a
dynamic type that delays type checking until runtime [3]. JS++ is typed JavaScript
that allows untyped values using a catch-all external type [10]. None of these four
implement gradual types as envisioned by researchers [19, 54, 62]; instead, they offer
a pragmatic solution to interoperability problems.

8 Lessons

Static Python is an ambitious undertaking. Its developers are maintaining a fork of
the Python 3.8 runtime, a type checker, an optimizing ahead-of-time compiler, and a
method-based JIT compiler. The team has converted hundreds of untyped modules
to Static Python and plans to convert thousands more in the future. And yet, Static
Python is restricted to set attainable goals:

The syntax of sound static types is relatively small compared to PEP 484. Higher-
order types are absent. The focus is instead on first-order objects and standard
data structures (Section 2.1).

The type checker analyzes entire modules rather than individual statements, and
although it supports a dynamic type, dynamic type-checked code does not have
the same freedom as untyped code (Section 2.2).

Shallow types accommodate Python code but offer coarse soundness guarantees.
Concrete types are deeply sound, but add nonlocal constraints (Section 2.3).

Gradual class hierarchies are permitted, but restricted to single inheritance. Static-
to-static method overrides cannot reduce the precision of types (Section 2.4).

Progressive primitive types are available to maximize performance (Section 2.5).

Many of these restrictions go against the grain of the mainstream research community,
but they have been effective in practice. The current 3.7% increase in Instagram web
server CPU efficiency is a huge improvement and was obtained incrementally without
any careful planning to avoid performance bottlenecks. By contrast, bottlenecks are a
major concern for expressive, structurally-typed gradual languages [23, 55].
In conclusion, the gradual soundness approach of Static Python seems to be a

promising way to realize the vision of gradual typing. Determining whether this
conjecture holds more broadly calls for research on two fronts. First, Static Python
must be applied to additional projects in a module-at-a-time manner. A systematic
evaluation of a few small projects would be especially useful to find performance
bottlenecks. Second, the Static Python approach should be adapted to other languages.
An optionally-typed language such as TypeScript would be an ideal starting point.

Data Availability Statement The software that supports Section 4 of this paper is
available via Zenodo [32] and Software Heritage [33].

Acknowledgements Static Python and the Cinder JIT were developed by Max Bern-
stein, John Biesnecker, Jacob Bower, Sinan Cepel, Tiansi Hu, Orvid King, Vladimir
Matveev, William Meehan, Carl Meyer, Matt Page, Aniket Panse, Brett Simmers, An-

2:24

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

drei Talaba, Dino Viehland, and Shiyu Wang. The Brown authors contributed to the
language by modeling it independently; they are not part of the Static Python team.
Special thanks to Twitter, through which the two teams (specifically, Meyer and

Krishnamurthi) met. Thanks also to Tobias Pape for going above and beyond to offer
splendid assistance with the paper typesetting. This work was partly supported by
Meta and by the US National Science Foundation. Greenman is supported by NSF
grant 2030859 to the CRA for the CIFellows project.

A GitHub Issues

The 26 GitHub issues that arose from our work may be found at the following three
links. A list of issue numbers follows each link (all accessed 2022-05-17).

https://github.com/facebookincubator/cinder/issues/created_by/LuKC1024 (N=20)
#37, 39, 40, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52, 53, 59, 60, 61, 62, 63, 65

https://github.com/facebookincubator/cinder/issues/created_by/bennn (N=5)
#35, 36, 54, 55, 71

https://github.com/facebookincubator/cinder/issues/64 (N=1)
#64

The critical soundness issues were: #36, 39, 53, 55, and 62.

B On Migrations from Pyre to Static Python

Although the Instagram web server has extensive type annotations that are checked
by Pyre, these annotations are not always enough to satisfy Static Python. In fact,
code may have latent bugs that Pyre did not catch; we list common reasons for such
bugs below:

Pyre misses some bugs because it does not monitor run-time interactions with
untyped code.

Similarly, some uses of the Pyre dynamic type (Any) end up raising errors when
Static Python monitors their interactions with precisely-typed code.

Occurrences of the special comment # pyre-fixme disable Pyre checks.

Some annotations intentionally lie to reduce the work of maintaining types. For
example:

– The standard typeshed repo of Python type annotations declares that a weak
reference has the dynamic type [9]. This declaration is easy to use because it
does not force programmers to handle the case where their weakly-held object
has been collected, but it is also a potential source of bugs.

– Mutable class attributes are unsoundly covariant in Pyre and other Python type
checkers, including mypy [57].

– The meta-type Type is unsoundly covariant as well in Pyre and others.

2:25

https://cifellows2020.org
https://github.com/facebookincubator/cinder/issues/created_by/LuKC1024
https://github.com/facebookincubator/cinder/issues/created_by/bennn
https://github.com/facebookincubator/cinder/issues/64
https://github.com/facebookincubator/cinder/issues/36
https://github.com/facebookincubator/cinder/issues/39
https://github.com/facebookincubator/cinder/issues/53
https://github.com/facebookincubator/cinder/issues/55
https://github.com/facebookincubator/cinder/issues/62

Gradual Soundness: Lessons from Static Python

– Argument splatting, i.e., applying a function that expects positional arguments
to a list (f(*lst)), is not statically checked either.

None of these issues are problems with Pyre. Quite naturally, it cannot find bugs in
code that it does not analyze! The takeaway is simply that optional type systems can
miss a variety of issues.

C Skipped Static Python Regression Tests

As of January 9 (commit 6d61575), the Static Python test suite contains 802 tests.
We use 265 of these tests for the model. The remaining 537 tests are skipped for the
following reasons:

269 test primitive types.

62 test optional and keyword functions.

26 test the classloader.

24 test coroutines (async).
23 test list and dictionary comprehensions.

15 use format strings.

12 test class and object slots.

The others (N = 106) test a long tail of other topics including byte strings, memory
management, specific decorators (such as@staticmethod), and optimizations.

D Fine-Grained Benchmark Data

The tables in this section present fine-grained data for the microbenchmark programs.
Each benchmark has several versions of its code that accomplish the same work: the
original untyped version (Orig) and a typed version (T-Max) converted for maximum
performance under Static Python and the JIT. Some benchmarks have a basic typed
version (T-Min) that adds only type annotations and necessary casts to the original
code, without using any more advanced Static Python features such as primitive types
or otherwise optimizing the code for Static Python. Fannkuch has a second basic
version (T-Min-2) that uses just a few primitive integers where it can be done without
significant changes to the code.
The other axes of our test matrix are SP (whether the Static Python compiler is

used), JIT (whether the Cinder JIT is enabled), and SF (whether the JIT shadow-frame
mode is enabled, which reduces Python frame allocation costs.) The matrix is not
complete, since using the Static Python compiler on untyped code has no noticeable
effect, and shadow-frame mode is only relevant under the JIT.
Benchmarks are run on a 64-bit CentOS Linux system, using a build of Cinder

compiled with default configure settings. Overall process user time is measured via
the time utility. Each benchmark/configuration is run 10 times (after an initial warmup

2:26

https://github.com/facebookincubator/cinder/commit/6d61575e28b2d1f31a197f883486c5f012de98c1

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

run to update the bytecode cache file and thereby ignore compilation time), and all
individual data points are recorded. All data points are in seconds.

JIT runs use a JIT list that includes only the benchmark code itself, to minimize the
overhead of compiling standard library code not used in the benchmark.

Benchmarks richards and fannkuch ran on commit d0d071

deltablue ran on commit c9d14c

nbody ran on commit 144a21

Fannkuch in particular is very numeric-heavy, so using unboxed primitive integers
in the typed version can be a big win. For this to work maximally efficiently, we also
need to avoid operations that don’t yet support primitives and thus would require
expensive boxing. In typed-and-optimized Fannkuch (T-Max), these changes move a
lot of the work out of heavily-optimized C builtin methods (for list slice/insert/pop)
and into simple Python code doing the equivalent operations manually with simple
iteration and indexing. In the short run this is a massive pessimization for non-static
Python (or even SP without the JIT, since currently we always use boxed integers in
the interpreter loop.) In the long run it suggests that Static Python + JIT could make
it feasible to implement many more of these core datastructure operations in pure
Python rather than in C.

Because of this subtlety, we include benchmark results for both typed and untyped
versions of each benchmark. In the short term, perhaps the most relevant comparison
is the performance of Static Python on the typed benchmark vs the performance of
nonstatic Python on the untyped benchmark; this gives a fair picture of expected perf
gains converting code to Static Python with some willingness to optimize.

We also observe significant untapped opportunity to improve Static Python’s perfor-
mance; for example, 20% of Typed Fannkuch SP+JIT time is spent on bounds-checking
array accesses; most of this runtime bounds-checking cost could be eliminated if the
Static Python compiler tracks known array sizes and integer values more thoroughly.
And it would also be possible to support list slicing, list pop, and list insert with
primitive arguments, thus avoiding the need to rewrite these operations in Python for
maximum efficiency.

T-Min Fannkuch without the JIT is slow because of a known issue where we don’t
cache function lookups for INVOKE_FUNCTION in the interpreter loop, making the calls
to list.insert and list.pop slower; this is fixable.

2:27

https://github.com/facebookincubator/cinder/commit/d0d071a9acf3e65700e7c6f8982c5087c700d116
https://github.com/facebookincubator/cinder/commit/c9d14c4474facfeca15b618015b58b99a3e86d25
https://github.com/facebookincubator/cinder/commit/144a21e66aeae5cde08847482249396b2e16eccc

Gradual Soundness: Lessons from Static Python

Table 5 Richards microbenchmark data

T-Max T-Max T-Max T-Max T-Max T-Max

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.57 1.29 7.86 8.36 10.24 16

0.59 1.32 7.92 8.84 9.97 15.73

0.58 1.33 7.89 8.9 10.57 16.2

0.58 1.33 7.92 8.53 10.71 16.71

0.56 1.33 7.83 9.15 9.89 16.62

0.56 1.33 7.97 8.25 10.44 15.65

0.55 1.32 8.18 8.78 10.07 16.22

0.55 1.31 7.85 8.67 10.07 15.73

0.56 1.31 7.96 8.52 10.14 15.82

0.57 1.32 8 8.35 10.57 16.66

T-Min T-Min T-Min T-Min T-Min T-Min

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

1.41 2.68 7.67 5.58 7.97 13.32

1.38 2.6 7.9 5.92 7.25 13.59

1.39 2.64 7.74 5.54 7.64 13.83

1.38 2.65 7.8 6.06 7.24 13.95

1.37 2.62 7.68 5.52 7.2 13.5

1.39 2.58 7.8 5.63 7.27 13.52

1.36 2.65 7.79 5.74 7.17 13.34

1.43 2.66 7.82 5.56 7.54 13.68

1.53 2.63 7.9 5.59 6.89 13.79

1.37 2.71 7.95 5.74 6.91 13.5

Orig Orig Orig

(JIT SF) (JIT) ()

2.6 3.88 10.17

2.6 4.01 10.18

2.61 4.17 10.73

2.9 3.92 9.96

2.63 3.79 10.04

2.64 3.95 9.99

2.62 3.9 10.16

2.6 3.84 9.69

2.6 4.04 9.82

2.62 3.85 9.85

2:28

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Table 6 Fannkuch microbenchmark data

T-Max T-Max T-Max T-Max T-Max T-Max

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

1.27 1.39 34.69 40.74 41 48.23

1.32 1.25 34.35 40.23 40.94 49.03

1.28 1.26 34.67 40.74 40.65 49.42

1.23 1.31 35.71 40.94 39.7 49.35

1.28 1.38 34.85 39.59 40.46 49.18

1.26 1.34 33.96 40.45 39.99 47.79

1.26 1.23 34.65 40.78 40.97 49.7

1.27 1.35 33.83 40.96 41.78 47.92

1.23 1.4 36.23 40.49 40.29 48.68

1.23 1.27 36.05 40.72 40.11 48.29

T-Min T-Min T-Min T-Min T-Min T-Min

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

2.77 2.83 6.18 2.89 2.86 4.07

2.85 2.8 6.12 2.94 2.9 4.06

2.79 2.77 6.38 2.87 2.86 4.1

2.87 2.81 6.23 2.87 2.85 4.29

2.85 2.84 6.17 2.92 2.81 4.14

2.87 2.8 6.21 2.94 2.8 4.06

2.92 2.76 6.04 3.11 3.05 4.08

2.78 2.76 6.13 3.1 2.86 4.19

2.84 2.76 6.13 2.87 2.96 4.31

2.92 2.79 6.17 2.91 2.96 4.1

T-Min-2 T-Min-2 T-Min-2 T-Min-2 T-Min-2 T-Min-2

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

2.48 2.52 7.28 3.16 3.08 4.59

2.52 2.48 7.28 3.26 3.08 4.51

2.47 2.53 7.24 3.11 3.18 4.59

2.48 2.57 7.35 3.18 3.14 4.73

2.5 2.56 7.34 3.14 3.12 4.63

2.43 2.47 7.17 3.23 3.09 4.53

2.47 2.69 7.18 3.41 3.21 4.48

2.47 2.45 7.14 3.43 3.14 4.53

2.43 2.55 7.23 3.08 3.24 4.53

2.52 2.49 7.2 3.16 3.18 4.45

Orig Orig Orig

(JIT SF) (JIT) ()

2.81 2.94 4.02

2.66 2.85 4.22

2.69 2.78 4.01

2.75 2.8 4.01

2.75 2.92 4.07

2.78 2.83 4.36

2.84 2.81 4.19

2.7 2.86 4.25

2.76 2.78 4.08

2.89 2.76 4.16

2:29

Gradual Soundness: Lessons from Static Python

Table 7 DeltaBlue microbenchmark data

T-Max T-Max T-Max T-Max T-Max T-Max

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.3 0.4 1.32 0.51 0.64 1.02

0.32 0.39 1.23 0.54 0.64 1

0.31 0.4 1.24 0.54 0.64 0.99

0.3 0.42 1.31 0.56 0.65 1.02

0.28 0.4 1.24 0.52 0.65 0.96

0.28 0.39 1.24 0.55 0.65 0.98

0.29 0.4 1.27 0.55 0.68 0.97

0.3 0.42 1.29 0.53 0.67 1

0.29 0.39 1.28 0.53 0.69 0.99

0.28 0.42 1.32 0.51 0.64 0.99

T-Min T-Min T-Min T-Min T-Min T-Min

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.6 0.74 1.32 0.69 0.82 1.27

0.59 0.74 1.32 0.67 0.84 1.27

0.57 0.71 1.31 0.7 0.89 1.23

0.58 0.74 1.23 0.73 0.82 1.26

0.6 0.71 1.32 0.71 0.84 1.26

0.59 0.73 1.4 0.71 0.84 1.23

0.56 0.7 1.37 0.71 0.85 1.35

0.58 0.69 1.3 0.71 0.82 1.31

0.58 0.69 1.27 0.69 0.81 1.34

0.6 0.73 1.39 0.68 0.8 1.33

T-Min-2 T-Min-2 T-Min-2 T-Min-2 T-Min-2 T-Min-2

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.54 0.66 1.38 0.61 0.76 1.17

0.51 0.62 1.44 0.61 0.75 1.25

0.55 0.69 1.41 0.6 0.82 1.17

0.54 0.69 1.41 0.63 0.75 1.16

0.54 0.7 1.41 0.65 0.75 1.17

0.55 0.67 1.4 0.66 0.75 1.15

0.52 0.67 1.43 0.61 0.75 1.15

0.52 0.66 1.4 0.62 0.75 1.18

0.52 0.64 1.51 0.65 0.76 1.18

0.5 0.65 1.41 0.62 0.79 1.15

Orig Orig Orig

(JIT SF) (JIT) ()

0.64 0.78 1.22

0.64 0.81 1.25

0.63 0.81 1.23

0.62 0.79 1.2

0.67 0.81 1.23

0.7 0.8 1.23

0.68 0.78 1.34

0.66 0.79 1.22

0.69 0.85 1.23

0.68 0.79 1.24

2:30

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Table 8 Nbody microbenchmark data

T-Max T-Max T-Max T-Max T-Max T-Max

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.17 0.18 3.61 0.92 0.88 2.12

0.17 0.18 3.57 0.91 0.88 2.09

0.17 0.18 3.68 0.96 0.88 2.24

0.17 0.17 3.82 0.93 0.9 2.15

0.17 0.17 3.72 0.89 0.9 2.17

0.18 0.18 3.63 0.89 0.9 2.14

0.18 0.16 3.5 0.89 0.89 2.23

0.18 0.17 3.45 0.89 0.93 2.32

0.2 0.17 3.61 0.92 0.88 2.16

0.2 0.18 3.63 0.9 0.92 2.06

T-Min T-Min T-Min T-Min T-Min T-Min

(SP JIT SF) (SP JIT) (SP) (JIT SF) (JIT) ()

0.8 0.81 1.3 0.83 0.74 1.2

0.8 0.8 1.28 0.78 0.74 1.22

0.81 0.8 1.31 0.75 0.77 1.22

0.87 0.86 1.29 0.74 0.76 1.18

0.85 0.8 1.26 0.76 0.77 1.19

0.81 0.81 1.3 0.77 0.75 1.22

0.86 0.79 1.25 0.76 0.75 1.17

0.87 0.83 1.24 0.74 0.77 1.16

0.81 0.81 1.3 0.74 0.74 1.17

0.82 0.83 1.23 0.76 0.76 1.16

Orig Orig Orig

(JIT SF) (JIT) ()

0.78 0.75 1.15

0.74 0.73 1.19

0.75 0.72 1.19

0.73 0.73 1.18

0.83 0.76 1.16

0.82 0.72 1.24

0.75 0.72 1.15

0.72 0.76 1.2

0.72 0.72 1.15

0.74 0.73 1.2

2:31

Gradual Soundness: Lessons from Static Python

Table 9 Exact commands to invoke each benchmark

Benchmark Command

Richards T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static.txt -X jit-enable-jit-list-wildcards←-
(SP JIT SF) -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/richards_static.py 100
Richards T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static.txt -X jit-enable-jit-list-wildcards←-
(SP JIT) -X install-strict-loader Tools/benchmarks/richards_static.py 100
Richards T-Max time ./python -X install-strict-loader Tools/benchmarks/richards_static.py 100
(SP)
Richards T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static.txt -X jit-enable-jit-list-wildcards←-
(JIT SF) -X jit-shadow-frame Tools/benchmarks/richards_static.py 100
Richards T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static.txt -X jit-enable-jit-list-wildcards←-
(JIT) Tools/benchmarks/richards_static.py 100
Richards T-Max time ./python Tools/benchmarks/richards_static.py 100
()
Richards T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static_basic.txt -X jit-enable-jit-list-wil←-
(SP JIT SF) dcards -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/richards_static_basic.py 100
Richards T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static_basic.txt -X jit-enable-jit-list-wil←-
(SP JIT) dcards -X install-strict-loader Tools/benchmarks/richards_static_basic.py 100
Richards T-Min time ./python -X install-strict-loader Tools/benchmarks/richards_static_basic.py 100
(SP)
Richards T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static_basic.txt -X jit-enable-jit-list-wil←-
(JIT SF) dcards -X jit-shadow-frame Tools/benchmarks/richards_static_basic.py 100
Richards T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_richards_static_basic.txt -X jit-enable-jit-list-wil←-
(JIT) dcards Tools/benchmarks/richards_static_basic.py 100
Richards T-Min time ./python Tools/benchmarks/richards_static_basic.py 100
()
Richards Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards -X jit-sha←-
(JIT SF) dow-frame Tools/benchmarks/richards.py 100
Richards Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards Tools/benc←-
(JIT) hmarks/richards.py 100
Richards Orig time ./python Tools/benchmarks/richards.py 100
()
Fannkuch T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static.txt -X jit-enable-jit-list-wildcards←-
(SP JIT SF) -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/fannkuch_static.py 5
Fannkuch T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static.txt -X jit-enable-jit-list-wildcards←-
(SP JIT) -X install-strict-loader Tools/benchmarks/fannkuch_static.py 5
Fannkuch T-Max time ./python -X install-strict-loader Tools/benchmarks/fannkuch_static.py 5
(SP)
Fannkuch T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static.txt -X jit-enable-jit-list-wildcards←-
(JIT SF) -X jit-shadow-frame Tools/benchmarks/fannkuch_static.py 5
Fannkuch T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static.txt -X jit-enable-jit-list-wildcards←-
(JIT) Tools/benchmarks/fannkuch_static.py 5
Fannkuch T-Max time ./python Tools/benchmarks/fannkuch_static.py 5
()
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic.txt -X jit-enable-jit-list-wil←-
(SP JIT SF) dcards -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/fannkuch_static_basic.py 5
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic.txt -X jit-enable-jit-list-wil←-
(SP JIT) dcards -X install-strict-loader Tools/benchmarks/fannkuch_static_basic.py 5
Fannkuch T-Min time ./python -X install-strict-loader Tools/benchmarks/fannkuch_static_basic.py 5
(SP)
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic.txt -X jit-enable-jit-list-wil←-
(JIT SF) dcards -X jit-shadow-frame Tools/benchmarks/fannkuch_static_basic.py 5

2:32

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

Table 9 Exact commands to invoke each benchmark (continued)

Benchmark Command

Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic.txt -X jit-enable-jit-list-wil←-
(JIT) dcards Tools/benchmarks/fannkuch_static_basic.py 5
Fannkuch T-Min time ./python Tools/benchmarks/fannkuch_static_basic.py 5
()
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic2.txt -X jit-enable-jit-list-wi←-
(SP JIT SF) ldcards -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/fannkuch_static_basic2.py 5
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic2.txt -X jit-enable-jit-list-wi←-
(SP JIT) ldcards -X install-strict-loader Tools/benchmarks/fannkuch_static_basic2.py 5
Fannkuch T-Min time ./python -X install-strict-loader Tools/benchmarks/fannkuch_static_basic2.py 5
(SP)
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic2.txt -X jit-enable-jit-list-wi←-
(JIT SF) ldcards -X jit-shadow-frame Tools/benchmarks/fannkuch_static_basic2.py 5
Fannkuch T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_fannkuch_static_basic2.txt -X jit-enable-jit-list-wi←-
(JIT) ldcards Tools/benchmarks/fannkuch_static_basic2.py 5
Fannkuch T-Min time ./python Tools/benchmarks/fannkuch_static_basic2.py 5
()
Fannkuch Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards -X jit-sha←-
(JIT SF) dow-frame Tools/benchmarks/fannkuch.py 5
Fannkuch Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards Tools/benc←-
(JIT) hmarks/fannkuch.py 5
Fannkuch Orig time ./python Tools/benchmarks/fannkuch.py 5
()
DeltaBlue T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static.txt -X jit-enable-jit-list-wildcard←-
(SP JIT SF) s -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/deltablue_static.py 100
DeltaBlue T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static.txt -X jit-enable-jit-list-wildcard←-
(SP JIT) s -X install-strict-loader Tools/benchmarks/deltablue_static.py 100
DeltaBlue T-Max time ./python -X install-strict-loader Tools/benchmarks/deltablue_static.py 100
(SP)
DeltaBlue T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static.txt -X jit-enable-jit-list-wildcard←-
(JIT SF) s -X jit-shadow-frame Tools/benchmarks/deltablue_static.py 100
DeltaBlue T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static.txt -X jit-enable-jit-list-wildcard←-
(JIT) s Tools/benchmarks/deltablue_static.py 100
DeltaBlue T-Max time ./python Tools/benchmarks/deltablue_static.py 100
()
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic.txt -X jit-enable-jit-list-wi←-
(SP JIT SF) ldcards -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/deltablue_static_basic.py 100
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic.txt -X jit-enable-jit-list-wi←-
(SP JIT) ldcards -X install-strict-loader Tools/benchmarks/deltablue_static_basic.py 100
DeltaBlue T-Min time ./python -X install-strict-loader Tools/benchmarks/deltablue_static_basic.py 100
(SP)
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic.txt -X jit-enable-jit-list-wi←-
(JIT SF) ldcards -X jit-shadow-frame Tools/benchmarks/deltablue_static_basic.py 100
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic.txt -X jit-enable-jit-list-wi←-
(JIT) ldcards Tools/benchmarks/deltablue_static_basic.py 100
DeltaBlue T-Min time ./python Tools/benchmarks/deltablue_static_basic.py 100
()
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic2.txt -X jit-enable-jit-list-w←-
(SP JIT SF) ildcards -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/deltablue_static_basic2.py 100
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic2.txt -X jit-enable-jit-list-w←-
(SP JIT) ildcards -X install-strict-loader Tools/benchmarks/deltablue_static_basic2.py 100
DeltaBlue T-Min time ./python -X install-strict-loader Tools/benchmarks/deltablue_static_basic2.py 100
(SP)

2:33

Gradual Soundness: Lessons from Static Python

Table 9 Exact commands to invoke each benchmark (continued)

Benchmark Command

DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic2.txt -X jit-enable-jit-list-w←-
(JIT SF) ildcards -X jit-shadow-frame Tools/benchmarks/deltablue_static_basic2.py 100
DeltaBlue T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_deltablue_static_basic2.txt -X jit-enable-jit-list-w←-
(JIT) ildcards Tools/benchmarks/deltablue_static_basic2.py 100
DeltaBlue T-Min time ./python Tools/benchmarks/deltablue_static_basic2.py 100
()
DeltaBlue Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards -X jit-sha←-
(JIT SF) dow-frame Tools/benchmarks/deltablue.py 100
DeltaBlue Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards Tools/benc←-
(JIT) hmarks/deltablue.py 100
DeltaBlue Orig time ./python Tools/benchmarks/deltablue.py 100
()
NBody T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static.txt -X jit-enable-jit-list-wildcards -X←-
(SP JIT SF) jit-shadow-frame -X install-strict-loader Tools/benchmarks/nbody_static.py
NBody T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static.txt -X jit-enable-jit-list-wildcards -X←-
(SP JIT) install-strict-loader Tools/benchmarks/nbody_static.py
NBody T-Max time ./python -X install-strict-loader Tools/benchmarks/nbody_static.py
(SP)
NBody T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static.txt -X jit-enable-jit-list-wildcards -X←-
(JIT SF) jit-shadow-frame Tools/benchmarks/nbody_static.py
NBody T-Max time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static.txt -X jit-enable-jit-list-wildcards To←-
(JIT) ols/benchmarks/nbody_static.py
NBody T-Max time ./python Tools/benchmarks/nbody_static.py
()
NBody T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static_basic.txt -X jit-enable-jit-list-wildca←-
(SP JIT SF) rds -X jit-shadow-frame -X install-strict-loader Tools/benchmarks/nbody_static_basic.py
NBody T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static_basic.txt -X jit-enable-jit-list-wildca←-
(SP JIT) rds -X install-strict-loader Tools/benchmarks/nbody_static_basic.py
NBody T-Min time ./python -X install-strict-loader Tools/benchmarks/nbody_static.py←-
(SP)
NBody T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static_basic.txt -X jit-enable-jit-list-wildca←-
(JIT SF) rds -X jit-shadow-frame Tools/benchmarks/nbody_static_basic.py
NBody T-Min time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_nbody_static.txt -X jit-enable-jit-list-wildcards To←-
(JIT) ols/benchmarks/nbody_static.py
NBody T-Min time ./python Tools/benchmarks/nbody_static_basic.py
()
NBody Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards -X jit-sha←-
(JIT SF) dow-frame Tools/benchmarks/nbody.py
NBody Orig time ./python -X jit -X jit-list-file=Tools/benchmarks/jitlist_main.txt -X jit-enable-jit-list-wildcards Tools/benc←-
(JIT) hmarks/nbody.py
NBody Orig time ./python Tools/benchmarks/nbody.py
()

2:34

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

References

[1] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-
Hochstadt. “Sound Gradual Typing: only Mostly Dead”. In: PACMPL 1.OOPSLA
(2017), 54:1–54:24. doi: 10.1145/3133878.

[2] Gavin Bierman, Martin Abadi, and Mads Torgersen. “Understanding Type-
Script”. In: ECOOP. 2014, pages 257–281. doi: 10.1007/978-3-662-44202-9_11.

[3] Gavin Bierman, Erik Meijer, and Mads Torgersen. “Adding Dynamic Types to
C#”. In: ECOOP. 2010, pages 76–100. doi: 10.1145/3428290.

[4] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards,
Rok Strniša, Jan Vitek, and Tobias Wrigstad. “Thorn: Robust, Concurrent,
Extensible Scripting on the JVM”. In: OOPSLA. 2009, pages 117–136. doi:
10.1145/1640089.1640098.

[5] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio
Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith. “A Trusted
Mechanised JavaScript Specification”. In: POPL. 2014, pages 87–100. doi: 10.
1145/2535838.2535876.

[6] Guiseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek.
“Gradual Typing: A New Perspective”. In: PACMPL 3.POPL (2019), 16:1–16:32.
doi: 10.1145/3290329.

[7] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel
Levy. “Fast and Precise Type Checking for JavaScript”. In: PACMPL 1.OOPSLA
(2017), 56:1–56:30. doi: 10.1145/3133872.

[8] Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. “KafKa:
Gradual Typing for Objects”. In: ECOOP. 2018, 12:1–12:23. doi: 10.4230/LIPIcs.
ECOOP.2018.12.

[9] Python Contributors. Typeshed. url: https://github.com/python/typeshed
(visited on 2022-01-15).

[10] Onux Corporation. JS++ Language Reference. url: https://docs.onux.com/en-
US/Developers/JavaScript-PP/Language/Reference (visited on 2022-01-09).

[11] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler,
and Vincent St-Amour. “Collapsible Contracts: Fixing a Pathology of Gradual
Typing”. In: PACMPL 2.OOPSLA (2018), 133:1–133:27. doi: 10.1145/3276503.

[12] Robert Bruce Findler and Matthias Felleisen. “Contracts for Higher-Order Func-
tions”. In: ICFP. 2002, pages 48–59. doi: 10.1145/581478.581484.

[13] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. “Classes and
Mixins”. In: POPL. 1998, pages 171–183. doi: 10.1145/268946.268961.

[14] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. “Modelling the ARMv8 Architecture,
Operationally: Concurrency and ISA”. In: POPL. 2016, pages 608–621. doi:
10.1145/2837614.2837615.

2:35

https://doi.org/10.1145/3133878
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/3428290
https://doi.org/10.1145/1640089.1640098
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3133872
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://github.com/python/typeshed
https://docs.onux.com/en-US/Developers/JavaScript-PP/Language/Reference
https://docs.onux.com/en-US/Developers/JavaScript-PP/Language/Reference
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/2837614.2837615

Gradual Soundness: Lessons from Static Python

[15] Ronald Garcia. “Calculating Threesomes, with Blame”. In: ICFP. 2013, pages 417–
428. doi: 10.1145/2500365.2500603.

[16] Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James
Noble. “Which of My Transient Type Checks Are Not (Almost) Free?” In: VMIL.
2019, pages 58–66. doi: 10.1145/3358504.3361232.

[17] Aviral Goel, Pierre Donat-Bouillud, Filip Krikava, Christoph M. Kirsch, and
Jan Vitek. “What We Eval in the Shadows: A Large-Scale Study of Eval in R
Programs”. In: PACMPL 5.OOPSLA (2021), pages 1–23. doi: 10.1145/3485502.

[18] Google. Pytype Language. url: https://pypi.org/project/pytype (visited on
2022-01-15).

[19] Michael Greenberg. “The Dynamic Practice and Static Theory of Gradual Typ-
ing”. In: SNAPL. 2019, 6:1–6:20. doi: 10.4230/LIPIcs.SNAPL.2019.6.

[20] Ben Greenman. “Deep and Shallow Types for Gradual Languages”. In: PLDI.
2022, pages 580–593. doi: 10.1145/3519939.3523430.

[21] Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. “A
Transient Semantics for Typed Racket”. In: Programming 6.2 (2022), 9:1–9:26.
doi: 10.22152/programming-journal.org/2022/6/9.

[22] Ben Greenman and Zeina Migeed. “On the Cost of Type-Tag Soundness”. In:
PEPM. 2018, pages 30–39. doi: 10.1145/3162066.

[23] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce
Findler, Jan Vitek, and Matthias Felleisen. “How to Evaluate the Performance of
Gradual Type Systems”. In: JFP 29.e4 (2019), pages 1–45. doi: 10.1145/3473573.

[24] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cor-
mac Flanagan. “Sage: Hybrid Checking for Flexible Specifications”. In: SFP.
University of Chicago, TR-2006-06. 2006, pages 93–104. url: http://scheme2006.
cs.uchicago.edu/scheme2006.pdf.

[25] Hugo Musso Gualandi and Roberto Ierusalimschy. “Pallene: a companion
language for Lua”. In: SCP 189.102393 (2020), pages 1–15. doi: 10.1016/j.scico.
2020.102393.

[26] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “The Essence of
JavaScript”. In: ECOOP. Volume 6183. 2010, pages 126–150. doi: 10.1007/978-3-
642-14107-2_7.

[27] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “Typing Local Con-
trol and State Using Flow Analysis”. In: ESOP. 2011, pages 256–275. doi: 10.
1007/978-3-642-19718-5_14.

[28] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund,Matthias Felleisen,
Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and
Robert Bruce Findler. “Run your Research: On the Effectiveness of Lightweight
Mechanization”. In: POPL. 2012, pages 285–296. doi: 10.1145/2103656.2103691.

2:36

https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/3358504.3361232
https://doi.org/10.1145/3485502
https://pypi.org/project/pytype
https://doi.org/10.4230/LIPIcs.SNAPL.2019.6
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.1145/3162066
https://doi.org/10.1145/3473573
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.1016/j.scico.2020.102393
https://doi.org/10.1016/j.scico.2020.102393
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.1145/2103656.2103691

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

[29] Casey Klein and Robert Bruce Findler. Randomized Testing in PLT Redex. Tech-
nical report CPSLO-CSC-09-03. Cal Poly State University, 2009. url: http:
//www.schemeworkshop.org/2009/scheme2009.pdf (visited on 2022-05-17).

[30] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. “Toward
Efficient Gradual Typing for Structural Types via Coercions”. In: PLDI. 2019,
pages 517–532. doi: 10.1145/3314221.3314627.

[31] Ivan Levkivskyi, Jukka Lehtosalo, and Łukasz Langa. PEP 544 Protocols: Struc-

tural Subtyping. url: https://www.python.org/dev/peps/pep-0544/ (visited on
2022-01-25).

[32] Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse,
and Shriram Krishnamurthi. Accepted Artifact for Gradual Soundness: Lessons

from Static Python. Version 1.0. May 2022. doi: 10.5281/zenodo.6577584. url:
https://doi.org/10.5281/zenodo.6577584.

[33] Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and
Shriram Krishnamurthi. Artifact for Gradual Soundness: Lessons from Static

Python. url: https://archive.softwareheritage.org/swh:1:dir:2df8e85028a911d
84594bae09ba8eeb388316b7e (visited on 2022-04-26).

[34] Stefan Malewski, Michael Greenberg, and Éric Tanter. “Gradually Structured
Data”. In: PACMPL 5.OOPSLA (2021), pages 1–29. doi: 10.1145/3485503.

[35] Jacob Matthews and Robert Bruce Findler. “Operational Semantics for Multi-
Language Programs”. In: TOPLAS 31.3 (2009), pages 1–44. doi: 10.1145/1498926.
1498930.

[36] Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. “Eval Begone!:
Semi-Automated Removal of Eval from JavaScript Programs”. In: OOPSLA. 2012,
pages 607–620. doi: 10.1145/2384616.2384660.

[37] Meta. Pyre Language. url: https://pyre-check.org (visited on 2022-01-15).

[38] Microsoft. Pyright Language. url: https://github.com/Microsoft/pyright (visited
on 2022-01-24).

[39] Fabian Muehlboeck and Ross Tate. “Sound Gradual Typing is Nominally Alive
and Well”. In: PACMPL 1.OOPSLA (2017), 56:1–56:30. doi: 10.1145/3133880.

[40] Fabian Muehlboeck and Ross Tate. “Transitioning from Structural to Nominal
Code with Efficient Gradual Typing”. In: PACMPL 5.OOPSLA (2021), 127:1–127:29.
doi: 10.1145/3485504.

[41] Max S. New, Daniel R. Licata, and Amal Ahmed. “Gradual Type Theory”. In:
PACMPL 3.POPL (2019), 15:1–15:31. doi: 10.1145/3290328.

[42] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pombrio, and
Shriram Krishnamurthi. “A Tested Semantics for Getters, Setters, and Eval in
JavaScript”. In: DLS. 2012, pages 1–16. doi: 10.1145/2384577.2384579.

[43] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel
Patterson, Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. “Python:
the Full Monty”. In: OOPSLA. 2013, pages 217–232. doi: 10.1145/2509136.2509536.

2:37

http://www.schemeworkshop.org/2009/scheme2009.pdf
http://www.schemeworkshop.org/2009/scheme2009.pdf
https://doi.org/10.1145/3314221.3314627
https://www.python.org/dev/peps/pep-0544/
https://doi.org/10.5281/zenodo.6577584
https://doi.org/10.5281/zenodo.6577584
https://archive.softwareheritage.org/swh:1:dir:2df8e85028a911d84594bae09ba8eeb388316b7e
https://archive.softwareheritage.org/swh:1:dir:2df8e85028a911d84594bae09ba8eeb388316b7e
https://doi.org/10.1145/3485503
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/2384616.2384660
https://pyre-check.org
https://github.com/Microsoft/pyright
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3485504
https://doi.org/10.1145/3290328
https://doi.org/10.1145/2384577.2384579
https://doi.org/10.1145/2509136.2509536

Gradual Soundness: Lessons from Static Python

[44] Joe Gibbs Politz, Hannah Quay-de la Vallee, and Shriram Krishnamurthi. “Pro-
gressive Types”. In: Onward! 2012, pages 55–66. doi: 10.1145/2384592.2384599.

[45] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. “The ins and outs of gradual
type inference”. In: POPL. 2012, pages 481–494. doi: 10.1145/2103656.2103714.

[46] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagi-
otis Vekris. “Safe & Efficient Gradual Typing for TypeScript”. In: POPL. 2015,
pages 167–180. doi: 10.1145/2676726.2676971.

[47] Gregor Richards, Ellen Arteca, and Alexi Turcotte. “The VM Already Knew
That: Leveraging Compile-Time Knowledge to Optimize Gradual Typing”. In:
PACMPL 1.OOPSLA (2017), 55:1–55:27. doi: 10.1145/3133879.

[48] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. “The Eval That
Men Do - A Large-Scale Study of the Use of Eval in JavaScript Applications”.
In: ECOOP. Volume 6813. 2011, pages 52–78. doi: 10.1007/978-3-642-22655-7_4.

[49] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. “Concrete Types for
TypeScript”. In: ECOOP. 2015, pages 76–100. doi: 10.4230/LIPIcs.ECOOP.2015.76.

[50] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. “Transient
Typechecks are (Almost) Free”. In: ECOOP. 2019, 15:1–15:29. doi: 10.4230/
LIPIcs.ECOOP.2019.5.

[51] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. “Gradual Type-and-
Effect Systems”. In: JFP 26 (2016), e19. doi: 10.1017/S0956796816000162.

[52] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”.
In: SFP. University of Chicago, TR-2006-06. 2006, pages 81–92. url: http://
scheme2006.cs.uchicago.edu/scheme2006.pdf.

[53] Jeremy G. Siek and Manish Vachharajani. “Gradual typing with unification-
based inference”. In: DLS. 2008, page 7. doi: 10.1145/1408681.1408688.

[54] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
“Refined Criteria for Gradual Typing”. In: SNAPL. 2015, pages 274–293. doi:
10.4230/LIPIcs.SNAPL.2015.274.

[55] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and
Matthias Felleisen. “Is Sound Gradual Typing Dead?” In: POPL. 2016, pages 456–
468. doi: 10.1145/2837614.2837630.

[56] Dart Team. The Dart type system. url: https://dart.dev/guides/language/type-
system (visited on 2022-01-15).

[57] Mypy Team. Mypy Language. url: http://www.mypy- lang.org (visited on
2022-01-15).

[58] Mypyc Team. Mypyc Language. url: https://github.com/mypyc/mypyc (visited
on 2022-01-27).

[59] Static Python team. Static Python microbenchmarks. url: https://github.com/
facebookincubator/cinder/tree/cinder/3 .8/Tools/benchmarks (visited on
2022-04-26).

2:38

https://doi.org/10.1145/2384592.2384599
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/3133879
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://doi.org/10.1017/S0956796816000162
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2837614.2837630
https://dart.dev/guides/language/type-system
https://dart.dev/guides/language/type-system
http://www.mypy-lang.org
https://github.com/mypyc/mypyc
https://github.com/facebookincubator/cinder/tree/cinder/3.8/Tools/benchmarks
https://github.com/facebookincubator/cinder/tree/cinder/3.8/Tools/benchmarks

K.-C. Lu, B. Greenman, C. Meyer, D. Viehland, A. Panse, S. Krishnamurthi

[60] Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration: from
Scripts to Programs”. In: DLS. 2006, pages 964–974. doi: 10.1145/1176617.1176755.

[61] Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped
Languages”. In: ICFP. 2010, pages 117–128. doi: 10.1145/1863543.1863561.

[62] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland,
and Asumu Takikawa. “Migratory Typing: Ten years later”. In: SNAPL. 2017,
17:1–17:17. doi: 10.4230/LIPIcs.SNAPL.2017.17.

[63] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 Type Hints.
url: https://www.python.org/dev/peps/pep-0484 (visited on 2022-01-15).

[64] Michael M. Vitousek. “Gradual Typing for Python, Unguarded”. PhD thesis.
Indiana University, 2019. HDL: 2022/23172. (Visited on 2022-05-17).

[65] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. “Optimizing and
Evaluating Transient Gradual Typing”. In: DLS. 2019, pages 28–41. doi: 10.1145/
3359619.3359742.

[66] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. “Big Types in Little
Runtime: Open-World Soundness and Collaborative Blame for Gradual Type
Systems”. In: POPL. 2017, pages 762–774. doi: 10.1145/3009837.3009849.

[67] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund,
and Jan Vitek. “Integrating Typed and Untyped Code in a Scripting Language”.
In: POPL. 2010, pages 377–388. doi: 10.1145/1706299.1706343.

2:39

https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://www.python.org/dev/peps/pep-0484
http://hdl.handle.net/2022/23172
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/1706299.1706343

Gradual Soundness: Lessons from Static Python

About the authors

Kuang-Chen Lu (LuKuangchen1024@gmail.com) is a PhD student
at Brown University.

Ben Greenman (benjamin.l.greenman@gmail.com) is a postdoc at
Brown University.

Carl Meyer (carljm@fb.com) is a software engineer on the Python
Language & Runtime team at Meta.

Dino Viehland (dinoviehland@fb.com) is a software engineer at
Meta working on the Cinder Python runtime. Previously he has
worked on other Python related efforts including Python Tools for
Visual Studio and IronPython.

Aniket Panse (aniketpanse@fb.com) is a software engineer on the
Python Language & Runtime team at Meta.

Shriram Krishnamurthi (shriram@brown.edu) is the Vice Presi-
dent of Programming Languages (no, not really) at Brown Univer-
sity.

2:40

mailto:LuKuangchen1024@gmail.com
mailto:benjamin.l.greenman@gmail.com
mailto:carljm@fb.com
mailto:dinoviehland@fb.com
mailto:aniketpanse@fb.com
mailto:shriram@brown.edu

	1 Introduction
	2 A Tour of Static Python
	2.1 Type System Context and Design Goals
	2.2 Type Dynamic
	2.3 Concrete Types and Shallow Types
	2.4 Gradual Class Hierarchies
	2.5 Progressive Primitive Types
	2.6 Behavioral Changes to Python
	2.7 Gradual Soundness

	3 Runtime System Highlights
	4 Model
	4.1 Surface Syntax and Types
	4.2 Evaluation Types, Casts, and Typing Judgment
	4.2.1 Casts
	4.2.2 Expression Typing, Cast Insertion

	4.3 Type Boundary Soundness

	5 Scaling to Python
	5.1 Interactions with Open-World Python Code
	5.2 Dynamic Python Features
	5.3 Bytecode and Optimizations

	6 Production Experience
	6.1 How to Interpret the CPU Efficiency Result
	6.2 Migration Path
	6.3 Analyzing Code Changes
	6.3.1 Code Changes for the Type Checker
	6.3.2 Code Changes for Performance
	6.3.3 Conclusion

	6.4 Microbenchmarks

	7 Related Work
	8 Lessons
	A GitHub Issues
	B On Migrations from Pyre to Static Python
	C Skipped Static Python Regression Tests
	D Fine-Grained Benchmark Data
	References
	About the authors

